首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3447篇
  免费   451篇
  国内免费   187篇
电工技术   38篇
综合类   182篇
化学工业   1162篇
金属工艺   112篇
机械仪表   245篇
建筑科学   77篇
矿业工程   4篇
能源动力   14篇
轻工业   646篇
水利工程   6篇
石油天然气   6篇
武器工业   1篇
无线电   482篇
一般工业技术   786篇
冶金工业   52篇
原子能技术   47篇
自动化技术   225篇
  2024年   23篇
  2023年   87篇
  2022年   90篇
  2021年   484篇
  2020年   231篇
  2019年   196篇
  2018年   142篇
  2017年   147篇
  2016年   155篇
  2015年   192篇
  2014年   217篇
  2013年   304篇
  2012年   241篇
  2011年   214篇
  2010年   158篇
  2009年   150篇
  2008年   118篇
  2007年   141篇
  2006年   112篇
  2005年   118篇
  2004年   110篇
  2003年   68篇
  2002年   68篇
  2001年   49篇
  2000年   47篇
  1999年   19篇
  1998年   21篇
  1997年   27篇
  1996年   19篇
  1995年   19篇
  1994年   16篇
  1993年   19篇
  1992年   14篇
  1991年   8篇
  1990年   7篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   7篇
  1979年   1篇
  1957年   1篇
排序方式: 共有4085条查询结果,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) are the main cell players in tissue repair and thanks to their self-renewal and multi-lineage differentiation capabilities, they gained significant attention as cell source for tissue engineering (TE) approaches aimed at restoring bone and cartilage defects. Despite significant progress, their therapeutic application remains debated: the TE construct often fails to completely restore the biomechanical properties of the native tissue, leading to poor clinical outcomes in the long term. Pulsed electromagnetic fields (PEMFs) are currently used as a safe and non-invasive treatment to enhance bone healing and to provide joint protection. PEMFs enhance both osteogenic and chondrogenic differentiation of MSCs. Here, we provide extensive review of the signaling pathways modulated by PEMFs during MSCs osteogenic and chondrogenic differentiation. Particular attention has been given to the PEMF-mediated activation of the adenosine signaling and their regulation of the inflammatory response as key player in TE approaches. Overall, the application of PEMFs in tissue repair is foreseen: (1) in vitro: to improve the functional and mechanical properties of the engineered construct; (2) in vivo: (i) to favor graft integration, (ii) to control the local inflammatory response, and (iii) to foster tissue repair from both implanted and resident MSCs cells.  相似文献   
2.
Direct allorecognition is the earliest and most potent immune response against a kidney allograft. Currently, it is thought that passenger donor professional antigen-presenting cells (APCs) are responsible. Further, many studies support that graft ischemia-reperfusion injury increases the probability of acute rejection. We evaluated the possible role of primary human proximal renal tubular epithelial cells (RPTECs) in direct allorecognition by CD4+ T-cells and the effect of anoxia-reoxygenation. In cell culture, we detected that RPTECs express all the required molecules for CD4+ T-cell activation (HLA-DR, CD80, and ICAM-1). Anoxia-reoxygenation decreased HLA-DR and CD80 but increased ICAM-1. Following this, RPTECs were co-cultured with alloreactive CD4+ T-cells. In T-cells, zeta chain phosphorylation and c-Myc increased, indicating activation of T-cell receptor and co-stimulation signal transduction pathways, respectively. T-cell proliferation assessed with bromodeoxyuridine assay and with the marker Ki-67 increased. Previous culture of RPTECs under anoxia raised all the above parameters in T-cells. FOXP3 remained unaffected in all cases, signifying that proliferating T-cells were not differentiated towards a regulatory phenotype. Our results support that direct allorecognition may be mediated by RPTECs even in the absence of donor-derived professional APCs. Also, ischemia-reperfusion injury of the graft may enhance the above capacity of RPTECs, increasing the possibility of acute rejection.  相似文献   
3.
Poly(ADP-ribose) polymerases (PARP) are proteins responsible for DNA damage detection and signal transduction. PARP inhibitors (PARPi) are able to interact with the binding site for PARP cofactor (NAD+) and trapping PARP on the DNA. In this way, they inhibit single-strand DNA damage repair. These drugs have been approved in recent years for the treatment of ovarian cancer. Although they share some similarities, from the point of view of the chemical structure and pharmacodynamic, pharmacokinetic properties, these drugs also have some substantial differences. These differences may underlie the different safety profiles and activity of PARPi.  相似文献   
4.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
5.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
6.
7.
对福建省生产领域近五年的纸巾纸进行随机抽样和质量分析,检测了产品的可迁移性荧光物质指标。结果显示:纸巾纸产品的可迁移性荧光物质指标共出现5批次不合格产品,产品合格率为98.7%,呈现较高的质量水平;纸巾纸的荧光物质检出率近五年呈现先上升后下降的趋势,2015年出现检出率峰值,其值为15.0%,2018年降为0%。按地域统计,福州地区出现3批次可迁移性荧光物质的纸巾纸产品,产品合格率为95.2%;其余地市的产品合格率均为100%。同时,福州纸巾纸产品荧光物质检出率最高,检出率达到12.7%。按产品质量等级统计,纸巾纸优等品的产品质量总体高于合格品的。  相似文献   
8.
While exercise training (ET) is an efficient strategy to manage obesity, it is recommended with a dietary plan to maximize the antiobesity functions owing to a compensational increase in energy intake. Capsiate is a notable bioactive compound for managing obesity owing to its capacity to increase energy expenditure. We aimed to examine whether the antiobesity effects of ET can be further enhanced by capsiate intake (CI) and determine its effects on resting energy expenditure and metabolic molecules. Mice were randomly divided into four groups (n = 8 per group) and fed high-fat diet. Mild-intensity treadmill ET was conducted five times/week; capsiate (10 mg/kg) was orally administered daily. After 8 weeks, resting metabolic rate and metabolic molecules were analyzed. ET with CI additively reduced the abdominal fat rate by 18% and solely upregulated beta-3-adrenoceptors in adipose tissue (p = 0.013) but did not affect the metabolic molecules in skeletal muscles. Surprisingly, CI without ET significantly increased the abdominal fat rate (p = 0.001) and reduced energy expenditure by 9%. Therefore, capsiate could be a candidate compound for maximizing the antiobesity effects of ET by upregulating beta-3-adrenoceptors in adipose tissue, but CI without ET may not be beneficial in managing obesity.  相似文献   
9.
Lysophosphatidic acid (lysoPtdOH) levels have previously been reported to decrease in rodents with short-term fasting. We investigated whether a 16 h fast would change expression of autotaxin, the predominant phospholipase D responsible for adipose-derived lysoPtdOH synthesis, or any of the lysophosphatidic acid receptors (1–6) in four white adipose tissue (WAT) depots and interscapular brown adipose tissue (BAT) in male C57Bl/6J mice fed ad libitum, or fasted for 16 h. Aside from small inductions of Lpar1 in epididymal WAT and Lpar2 in epididymal and inguinal WAT, no significant changes were observed in expression of the Lpar family members, or autotaxin in perirenal, retroperitoneal, epididymal, or inguinal WAT or BAT with fasting. Comparison of the relative expression of Lpar1-6 in various depots showed that Lpar6 was the predominant Lpar in both WAT and BAT, and suggests that further work on the adipose-specific role of Lpar6 is warranted.  相似文献   
10.
Palmitoleic acid has been classified as an insulin-sensitizing lipokine, but evidence for this from human studies has been inconsistent. We hypothesized that this is related to either the types of samples or conditions under which samples are collected. We measured plasma palmitoleic acid and total free fatty acids (FFA) using ultra-performance liquid chromatography in blood samples collected from 34 adults under a variety of conditions. We collected duplicate samples of adipose (n = 10), FFA (n = 9), and very low density lipoprotein triacylglycerol (VLDL-TAG) (n = 7) to measure the palmitoleic acid as a percentage of total fatty acids. We tested whether the percentage of palmitoleic acid was correlated with insulin resistance, as measured by homeostatic model of insulin resistance (HOMA-IR). Adipose stearoyl-coenzyme A desaturase 1 (SCD-1) protein was measured by capillary Western blotting. FFA-palmitoleic acid percentage increased as a function of total FFA and was greater (p < 0.005) in females than males. Adipose palmitoleic acid percentage was greater in females than males (p < 0.001), as was adipose SCD-1. Palmitoleic acid was greater in femoral fat than in abdominal fat in both females and males (p < 0.001), and correlated positively with HOMA-IR only in females. The test–retest reliability values for percentage palmitoleic acid were 7 ± 10% for adipose, 24 ± 26% for VLDL, and 53 ± 31% for FFA. Because FFA-palmitoleic acid percentage varies as a function of total FFA, investigators should re-evaluate how palmitoleic acid data is presented. The positive relationship between adipose palmitoleic acid and HOMA-IR in females suggests that it is not a potent insulin-sensitizing lipokine in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号