首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   15篇
  国内免费   36篇
电工技术   3篇
综合类   5篇
化学工业   31篇
金属工艺   169篇
机械仪表   4篇
矿业工程   19篇
能源动力   5篇
石油天然气   14篇
武器工业   2篇
无线电   4篇
一般工业技术   14篇
冶金工业   12篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   10篇
  2015年   6篇
  2014年   10篇
  2013年   11篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   10篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   4篇
  1994年   9篇
  1993年   10篇
  1992年   8篇
  1991年   5篇
  1990年   9篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1982年   2篇
  1981年   7篇
  1980年   2篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
排序方式: 共有282条查询结果,搜索用时 17 毫秒
1.
2.
王彦君 《矿冶》2020,29(4):23-28
通过对紫金山东南矿段铜钼(金)矿床地质矿化特征分析,指出铜钼矿化带主要赋存于花岗闪长斑岩的内外接触带,处于似斑状花岗闪长斑岩的上部,金矿化带赋存在表生氧化带的英安玢岩、隐爆角砾岩中。经过对矿石的组构特征、矿物生成顺序等特征分析,将矿床的成矿演化过程分为斑岩热液期、高硫化浅成低温热液期、表生氧化期三个主要矿化期次,进一步将斑岩热液期分为黑云母-钾长石化阶段、石英-绢云母化阶段、碳酸盐化阶段三个阶段;高硫化浅成低温热液期分为地开石化阶段、明矾石化阶段、硅化阶段三个阶段。研究结果为进一步研究矿床成因提供了依据。  相似文献   
3.
Ion exchanged CoNaY was sulfided at 473 and 673 K and subsequently heated in He at 673 and 773 K. The resulting samples were characterized by means of overall sulfur analysis, temperature programmed Ar treatment and Fourier transform infrared spectroscopy. It was shown that during He flushing at sufficiently high temperature a protolysis reaction occurs resulting in the decomposition of Co sulfide into Co2+ ions and H2S.  相似文献   
4.
The sulfidation behavior of Fe-Nb alloys containing up to 30 w/o Nb was studied over the range of 600–900°C in 0.01 aim. S2 vapor. All alloys were two-phase, consisting of an Fe-rich solid solution and Fe2Nb, and followed the parabolic rate law at all temperatures. Scales consisted of two layers-an outer layer of FeS and an inner, complex layer which contained some FeS, FeNb2S4 (possibly some FeNb3S6), NbS2, and intermetallic particles which were either completely or only partially sulfidized. Platinum markers were located always at the interface between the two layers, which corresponded to the original metal surface. Activation energies were 18±3 kcal/mol in close agreement with the 19.8 reported for pure iron. The sulfidation rate decreased markedly with increasing Nb content of the alloys. The decrease is attributed to increasing amounts of Fe2Nb with increasing Nb, the net effect being that the diffusion path for outward iron diffusion through the inner layer is reduced as the Nb content increases. An analysis of the structure of NbS2 reveals that it is easily intercalated with Fe between loosely bonded layers of S-Nb-S. The S-Nb-S layers are covalently bonded which results in very low diffusivities of either S or Nb in pure NbS2. Although intercalated Fe tends to change the Van der Waal's type bonding between layers to more ionic or covalent, Fe diffuses readily between the layers in NbS2. Intercalation of Fe also increases the concentration of sulfur defects in NbS2, which in turn increases the diffusivity of sulfur. Nb was observed to be immobile. Thus, it is thought that either outward iron diffusion or inward sulfur diffusion in the inner layer is the rate-controlling step, in spite of the close agreement of activation energies with that of the sulfidation of pure iron.  相似文献   
5.
Fe-30Mo alloys containing up to 9.1 wt% Al were sulfidized at 0.01 atm sulfur vapor over the temperature range of 700–900°C. The sulfidation kinetics followed the parabolic rate law for all alloys at all temperatures. For alloys containing small and intermediate amounts of Al (<4.8 wt.%), a duplex sulfide scale formed. The outer layers of the scales were found to be relatively compact FeS in all cases; whereas the inner layers were composed of the layered compound MoS 2 (intercalated with iron), the Chevrel compound Fe x Mo 6 S 8,a spinel double sulfide Al x Mo 2 S 4,depending on the Al content of the alloy and the sulfidation temperature. Extremely thin scales were found on the alloys with higher Al contents. Accordingly, extremely slow sulfidation rates were observed—even slower than the sulfidation rate of pure Mo. The transition of the sulfidation kinetics from a high-rate active mode to a low-rate passive mode requires both a critical Al content in the alloy and a critical Mo content. Because of the two-phase nature of the alloys, the latter requirement implies a critical volume fraction of the intermetallic second-phase in the alloy, which has been known as the multiphase effect. Interestingly, the multiphase effect in these alloys was also a function of the Al content in the alloys.  相似文献   
6.
Yu  Zhiming  Narita  Toshio 《Oxidation of Metals》2001,56(5-6):467-493
The oxidation behavior in air at 1473 K, and sulfidation behavior in a H2S–H2 gas mixture with a sulfur partial pressure of 10–2 Pa at 973 K of Al–Re coated CMSX-4 were studied. Investigation on the sulfidation behavior of the Re-coated CMSX-4 was carried out in a H2S–H2 gas mixture with a sulfur partial pressure of 10–2 Pa at 973 K. The experimental results show that a Re-rich alloy layer was formed between an -Al2O3 layer and the inner concentration zone of Ta and Ti for the CMSX-4 single crystal alloy with an Al–Re coating after oxidation. The Re-rich alloy layer containing Cr, W, Ni, Co, and Mo effectively inhibited the outward diffusion of alloying elements and the inward diffusion of Al. The Al/Re-coated CMSX-4 single crystal alloy had excellent sulfidation resistance; the Re-rich alloy layer, containing W, Ti, Ta, and Mo, which formed during the sulfidation process and located between the alumina scale and the CMSX-4 base alloy, plays a role in inhibiting the outward diffusion of alloying elements. The sulfidation resistance of CMSX-4 single-crystal alloy is greatly improved by a Re coating on the CMSX-4 alloy surface; this is attributed to a Re–Cr–W alloy layer that retarded the outward diffusion of cations and the oxide layer containing Ta, Ti, and Al, which inhibited the inward penetration of sulfur.  相似文献   
7.
The high temperature corrosion resistance of Ni-25.9Cr-13.5Al-1.2Y-0.6Si and Ni-10.2Co-12.4Cr-16.0Al-0.5Y-0.2Hf alloys was assessed in sulfidation/oxidation environments.In the environment with a sulfur partial pressure of 1Pa. and an oxygen partial pressure of 10^-19Pα,both these alloys exhibited three distinct stages in the weight gain-time curve when tested at 700℃.In the initial stage, selective sulfidation of Cr suppressed the formation of the other metal sulfides,resulting in lower weight gains.In the transient stage, breakdown and cracking of Cr sulfides and insufficient concentration of Cr at the outer zone led to the rapid formation of Ni sulfides and a rapid increase in weight.In the steady-state stage, corrosion was controlled by the diffusion of anions and/or cations, which led to a parabolic rate law.  相似文献   
8.
The corrosion of Co-Nb alloys containing up to 30 wt.% Nb in H2-H2S-H2O gas mixtures was studied over the temperature range of 600–800°C. The gas composition falls in the stability region of cobalt sulfide and Nb2O5 in the phase diagrams of the Co-O-S and Nb-O-S systems at all temperatures studied. Duplex scales, consisting of an outer layer of cobalt sulfide and a complex, heterophasic inner layer, were formed at all temperatures studied. In addition to cobalt sulfide and CoNb3S6, a small amount of NbO2 was found in the inner layer. The reason for the formation of NbO2 over that of Nb2O5 in the scale is that the outer sulfide scale lowers the oxygen activity within the scale into the NbO2-stability region. Two-stage kinetics were observed for all alloys, including an initial irregular stage usually followed by a steady-state parabolic stage. The steady-state parabolic rate constants decreased with increasing amounts of Nb, except for Co-20Nb corroded at 700°C. Nearly identical kinetics were observed for Co-20Nb corroded at 600°C and 700°C. The presence of NbO2 particles leads only to a limited decrease of the available cross-section area for the outward-diffusing metal ions. The activation energies for all alloys are similar and are in agreement with those obtained in a study of the sulfidation of the same alloys. The primary corrosion mechanism involves an outward Co transport.  相似文献   
9.
Oxidation-sulfidation studies were conducted on sheet samples of nickel aluminide, containing 23.5 at. % Al, 0.5 at. % Hf, and 0.2 at. % B in an annealed condition and after preoxidation treatments. Continuous weight-change measurements were made by a thermogravimetric technique in exposure atmospheres of air, a low- gas mixture, and low- gas mixtures with several levels of sulfur. Detailed scanning electron microscopy (SEM), X-ray, and electron microprobe analyses of the corrosion product scale layers were performed. The air-exposed specimens developed predominantly nickel oxide; the specimen exposed to a low- .  相似文献   
10.
Fe -base alloys containing 5, 10, and 20 wt. % Cr were oxidized in a stream of O2 at 750 and 900°C up to 264 hr. A sulfur decoration method was applied to detect the cracks generated in the scale during oxidation. This method revealed frequent crack generation and its healing in the scale. In the case of low-Cr alloys, the cracks are filled up with newly formed Fe-rich oxide but may be regenerated during further oxidation. Cracks are generated in the scale on an Fe-20Cr alloy also, although this alloy is not so severely attacked because of rapid healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号