首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27695篇
  免费   2870篇
  国内免费   1236篇
电工技术   840篇
综合类   1329篇
化学工业   8822篇
金属工艺   1713篇
机械仪表   1293篇
建筑科学   463篇
矿业工程   3116篇
能源动力   882篇
轻工业   1728篇
水利工程   200篇
石油天然气   1334篇
武器工业   174篇
无线电   1403篇
一般工业技术   4579篇
冶金工业   1681篇
原子能技术   746篇
自动化技术   1498篇
  2024年   59篇
  2023年   471篇
  2022年   740篇
  2021年   1020篇
  2020年   980篇
  2019年   852篇
  2018年   835篇
  2017年   986篇
  2016年   1092篇
  2015年   1051篇
  2014年   1657篇
  2013年   1830篇
  2012年   2061篇
  2011年   2144篇
  2010年   1528篇
  2009年   1614篇
  2008年   1406篇
  2007年   1558篇
  2006年   1473篇
  2005年   1345篇
  2004年   1063篇
  2003年   1046篇
  2002年   861篇
  2001年   660篇
  2000年   599篇
  1999年   505篇
  1998年   452篇
  1997年   361篇
  1996年   292篇
  1995年   265篇
  1994年   225篇
  1993年   158篇
  1992年   121篇
  1991年   99篇
  1990年   78篇
  1989年   51篇
  1988年   67篇
  1987年   41篇
  1986年   28篇
  1985年   26篇
  1984年   21篇
  1983年   14篇
  1982年   13篇
  1981年   5篇
  1980年   13篇
  1979年   5篇
  1974年   3篇
  1959年   3篇
  1955年   1篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 412 毫秒
1.
In this study, the separation of hydrogen from gas mixtures using a palladium membrane coupled with a vacuum environment on the permeate side was studied experimentally. The gas mixtures composed of H2, N2, and CO2 were used as the feed. Hydrogen permeation fluxes were measured with membrane operating temperature in the range of 320–380 °C, pressures on the retentate side in the range of 2–5 atm, and vacuum pressures on the permeate side in the range of 15–51 kPa. The Taguchi method was used to design the operating conditions for the experiments based on an orthogonal array. Using the measured H2 permeation fluxes from the Taguchi approach, the stepwise regression analysis was also employed for establishing the prediction models of H2 permeation flux, followed by the analysis of variance (ANOVA) to identify the significance and suitability of operating conditions. Based on both the Taguchi approach and ANOVA, the H2 permeation flux was mostly affected by the gas mixture composition, followed by the retentate side pressure, the vacuum degree, and the membrane temperature. The predicted optimal operating conditions were the gas mixture with 75% H2 and 25% N2, the membrane temperature of 320 °C, the retentate side pressure of 5 atm, and the vacuum degree of 51 kPa. Under these conditions, the H2 permeation flux was 0.185 mol s?1 m?2. A second-order normalized regression model with a relative error of less than 7% was obtained based on the measured H2 permeation flux.  相似文献   
2.
《Ceramics International》2022,48(17):24383-24392
We propose a novel approach for manufacturing dual-scale porosity alumina structures by UV curing-assisted 3D plotting of a specially formulated alumina feedstock using a thermo-regulated phase separable, photocurable camphene/triethylene glycol dimethacrylate (TEGDMA) vehicle. In particular, 3D plotting process was conducted at - 5 °C, and thus an alumina suspension prepared using liquid camphene/TEGDMA at room temperature could undergo phase separation, resulting in camphene crystals surrounded by walls comprised of liquid photopolymer enclosing alumina particles. To enhance the shape retention ability of extruded filaments, polystyrene (PS) polymer was used as the tackifier. The phase-separated feedrod could be extruded favorably through a nozzle and rapidly photopolymerized by UV light during the 3D plotting process. Three-dimensionally interconnected macropores were tightly constructed, which were separated by microporous alumina filaments, where micropores were created by the removal of camphene crystals via freeze-dying. The macroporosity of porous alumina ceramics was controlled by adjusting the distance between deposited filaments, while their microporosity was kept constant, leading to tightly tailored overall porosity and mechanical properties.  相似文献   
3.
This work develops a novel magnetic photocatalysts ZnO/SrFe12O19 (ZS) synthesized with hydrothermal process. The introduction of SrFe12O19 not only enhances the photocatalytic behavior of ZnO towards Rhodamine B (RhB) decomposition, but also reinforces the recycling stability. Especially, ZS-5 composite exhibits the optimal photocatalytic performance, and the RhB decomposition reaches 99.5% after being exposed to simulative sunlight for 70 min, which is obviously superior to that of bare ZnO. Furthermore, the ZS-5 can be recovered from RhB solution by an extra magnet space and reused. After five recycles, the RhB removal efficiency can still be maintained over 90%. Such prominent photocatalytic property and stability of ZS-5 are associated with the greatly improved detachment efficiency of photoexcited carriers in a magnetic field. This study could provide a new-type recyclable photocatalyst that can effectively purify dye wastewater for convenient recovery.  相似文献   
4.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
5.
ABSTRACT

Absorbed-dose estimation is essential for evaluation of the radiation tolerance of minor-actinide-separation processes. We propose a dose-evaluation method based on radiation permeability, with comparisons of heterogeneous structures seen in the solvent-extraction process, such as emulsions forming in the mixture of the organic and aqueous phases. A demonstration of radiation-energy-transfer simulation is performed with a focus on the minor-actinide-recovery process from high-level liquid waste with the aid of the Monte Carlo radiation-transport code PHITS. The simulation results indicate that the dose absorbed by the extraction solvent from alpha radiation depends upon the emulsion structure, and that from beta and gamma radiation depends upon the mixer-settler-apparatus size. Non-negligible contributions of well-permeable gamma rays were indicated in terms of the plant operation of the minor-actinide-separation process.  相似文献   
6.
With a growing interest in hydrogen as energy carrier, the efficient purification of hydrogen from gaseous mixtures is very important. This paper addresses the separation of hydrogen using Carbon Molecular Sieves Membranes (CMSM), which show an attractive combination of high permeability, selectivity and stability. Supported CMSM containing various amounts of aluminium have been prepared from novolac and aluminium acetyl acetonate (Al(acac)3) as carbon and alumina precursors. The thickness of the CMSM layers depend on the content of Al(acac)3 in the dipping solution, which also has influence in the pore size and pore size distribution of the membranes. The permeation properties of the membranes against the Al content in the membrane follows a volcano shape, where the membrane containing 4 wt (%) of Al(acac)3 has the best properties and was stable during 720 h for hydrogen at 150 °C and 6 bar pressure difference. All the CMSM have permeation properties well above the Robeson Upper limit.  相似文献   
7.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
8.
《Ceramics International》2021,47(18):25505-25513
Herein, (Co0.5Ni0.5)Cr0.3Fe1.7O4/graphene oxide nanocomposites were fabricated by ultrasonication technique, using pure spinel ferrite and graphene oxide synthesized by sol-gel method and modified Hummers' method, respectively. The effect of graphene incorporation with ferrite nanoparticles was studied by X-ray diffraction (XRD), electrical and dielectric measurements. XRD analysis revealed the spinel phase for the ferrite sample and confirmed the formation of graphene oxide. The crystallite size was found in the range of 3743 nm and the porosity increased with the increase in the concentration of graphene oxide in the composites. The DC electrical resistivity of spinel ferrite was found equal to 3.83×109 Ω.cm and it substantially decreased with the increase in the percentage of graphene oxide at room temperature. The real and imaginary part of relative permittivity followed the Maxwell-Wagner type of interfacial polarization. AC conductivity confirmed the conduction by hopping mechanism and increased on increasing the GO content. The coupling of magnetic ferrite with graphene oxide tunes the magneto-electrical properties for potential applications at high frequencies.  相似文献   
9.
《Ceramics International》2021,47(18):25883-25894
Oily wastewater treatment is a global challenge due to the substantial amount of effluent resulted from many industrial and domestic activities. To overcome the challenge of using existing treatment approach and fouling, superoleophobic coatings were fabricated. In this study, a superoleophobic membrane surface was obtained using the sol-gel technique with perfluorooctanoate (PFO), poly (diallyl dimethylammonium chloride) (PDADMAC), and nanoparticles as complex-polymer nanocomposites. The effects of coating cycles on the surface structure, chemical properties, surface chemistry, and oleophobicity of the surface were examined using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and oil contact angle measurement. The results showed that the coated layer successfully adhered to the substrate surface. However, the chemical stability with respect to oil contact angle (OCA) revealed a decline at pH 7 and pH 9 and maintained stability at pH 3. Besides, oil flux at 63.0 L/m2. h was achieved for PDADMAC-Al2O3/44 wt% PFO and the highest separation efficiency of 98% was obtained. Furthermore, the oil rejection decreases as the oil concentration increases from 1 to 3 g/L. OCA of 155° was obtained after 5 coating cycles. Apart from mitigating substrate fouling, the superoleophobic and superhydrophilic coating can be applied to a ceramic-based hollow fibre membrane and efficiently used for the separation of oil from oily wastewater.  相似文献   
10.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号