首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   22篇
  国内免费   5篇
电工技术   1篇
综合类   2篇
化学工业   52篇
金属工艺   8篇
机械仪表   3篇
建筑科学   2篇
能源动力   217篇
轻工业   5篇
石油天然气   1篇
无线电   12篇
一般工业技术   29篇
冶金工业   1篇
原子能技术   1篇
自动化技术   4篇
  2024年   1篇
  2023年   41篇
  2022年   48篇
  2021年   57篇
  2020年   51篇
  2019年   26篇
  2018年   21篇
  2017年   14篇
  2016年   10篇
  2015年   1篇
  2014年   7篇
  2013年   8篇
  2012年   6篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   4篇
  2004年   4篇
  2002年   5篇
  2001年   1篇
排序方式: 共有338条查询结果,搜索用时 98 毫秒
1.
Hydrogen technology is widely considered a novel clean energy source, and electrolysis is an effective method for hydrogen evolution. Therefore, efficient hydrogen evolution reaction (HER) catalysts are urgently needed to replace precious metal catalysts and meet ecological and environmental protection standards. Herein, Ni–Mn–P electrocatalysts are synthesized using facile electrodeposition technology. The influence of the Mn addition on the catalytic behavior is studied by the comprehensive analysis of catalytic performance and morphology of the catalysts. Among them, the Ni–Mn–P0.01 catalyst exhibits small coral-like structures, greatly improving the adsorption and desorption of hydrogen ions and reducing the overpotential hydrogen evolution. Consequently, overpotential at 10 mA cm?2 electric current density is 113 mV, and the value of the Tafel slope achieves 74 mV/dec. Furthermore, the Ni–Mn–P catalyst shows long-time (20 h) stability at current densities of 10 and 60 mA/cm2. The results confirm that the synergistic effect of Ni, Mn, and P accelerates the electrochemical reaction. Meanwhile, the addition of manganese element can change the micromorphology of the catalyst, thereby exposing more active sites to participate in the reaction, enhancing water ionization, improving the catalytic performance. This study opens a new way toward improving the activity of the catalyst by adjusting Mn concentration during the electrodeposition process.  相似文献   
2.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   
3.
HER2 targeted therapies have significantly improved prognosis of HER2-positive breast and gastric cancer. HER2 overexpression and mutation is the pathogenic driver in non-small cell lung cancer (NSCLC) and colorectal cancer, however, to date, there are no approved HER2-targeted therapies with these indications. Trastuzumab deruxtecan (T-DXd) is a novel HER2-directed antibody drug conjugate showing significant anti-tumor activity in heavily pre-treated HER2-positive breast and gastric cancer patients. Preliminary data have shown promising objective response rates in patients with HER2-positive NSCLC and colorectal cancer. T-DXd has an acceptable safety profile, however with concerns regarding potentially serious treatment-emergent adverse events. In this review we focus on the pharmacologic characteristics and toxicity profile of T-Dxd, and provide an update on the most recent results of clinical trials of T-DXd in solid tumors. The referenced papers were selected through a PubMed search performed on 16 March 2021 with the following searching terms: T-DXd and breast cancer, or gastric cancer, or non-small cell lung cancer (NSCLC), or colorectal cancer. Oral presentation, abstracts, and posters presented at the American Society of Clinical Oncology (ASCO, Alexandria, VA, USA) 2020 and the European Society for Medical Oncology (ESMO, Lugano, Switzerland) 2020 annual meetings were retrieved for data on T-DXd. We also overview ongoing research and data of combination therapies currently under investigation, which will impact on future therapeutic strategies. Clinicaltrials.gov was searched to identify ongoing clinical trials of T-DXd alone or in combination in solid tumors.  相似文献   
4.
开发用于水分解的高效稳定、低成本非贵金属电催化剂,特别是在同一电解质中对阴极的析氢反应(HER)和阳极的析氧反应(OER)都具有高效作用的电催化剂是一项挑战。以六水合硝酸钴、尿素、氟化铵和硒粉为原料,采用水热和高温固相法在镍网上原位构筑了CoSe2@NF,采用XRD、XPS、SEM和TEM对CoSe2@NF进行物相分析和形貌表征,并在碱性电解液中对CoSe2@NF的电催化析氧和析氢性能进行了测试。结果表明,表面粗糙的串珠状纳米线结构极大地增加了CoSe2有效活性位点的数量。该催化电极在OER和HER中均表现出高而稳定的催化活性。将CoSe2@NF作为全解水槽的阴阳极,在1.6 V槽电压下即可产生10 mA/cm2的电流,并可在1.7 V的电压下稳定运行100 h。这项研究为全解水提供了一种经济有效的解决方案.  相似文献   
5.
Efforts to engineer recombinant antibodies for specific diagnostic and therapy applications are time consuming and expensive, as each new recombinant antibody needs to be optimized for expression, stability, bio-distribution, and pharmacokinetics. We have developed a new way to construct recombinant antibody-like “devices” by using a bottom-up approach to build them from well-behaved discrete recombinant antibody domains or “parts”. Studies on antibody structure and function have identified antibody constant and variable domains with specific functions that can be expressed in isolation. We used the SpyTag/SpyCatcher protein ligase to join these parts together, thereby creating devices with desired properties based on summed properties of parts and in configurations that cannot be obtained by using genetic engineering. This strategy will create optimized recombinant antibody devices at reduced costs and with shortened development times.  相似文献   
6.
Exploring and designing efficient non-noble catalysts formed by element doping and nanostructure modification for the hydrogen evolution reaction (HER) is of critical importance with respect to sustainable resources. Herein, we have prepared a three-dimensional binary NiCo phosphide with hierarchical architecture (HA) composed of NiCoP nanosheets and nanowires grown on carbon cloth (CC) via a facile hydrothermal method followed by oxidation and phosphorization. Due to its unique hierarchical nanostructure, the NiCoP HA/CC electrocatalyst exhibits excellent performance and good working stability for the HER in both acidic and alkaline conditions. The obtained NiCoP HA/CC shows excellent HER activity with a low potential of 74 and 89 mV at 10 mA cm−2, a small Tafel slope of 77.2 and 99.8 mV dec−1 and long-term stability up to 24 h in acidic and alkaline electrolyte, respectively. NiCoP HA/CC, a non-noble metal material, is a promising electrocatalyst to replace noble metal-based electrocatalysts for the HER.  相似文献   
7.
Extremely low content of Ruthenium (Ru) nanoparticles were loaded on the carbon black (Ru/C) via reducing Ru ions with silicon monoxide. The obtained Ru/C nanocomposites exhibit an exciting electrochemical catalytic activity for hydrogen evolution reaction (HER) in the oxygen-free 0.5 M H2SO4 medium. The optical one (Ru/C-2) with a low Ru amount of 2.34% shows higher activity than previously reported Ru-based catalysts. The overpotential at 10 mA cm−2 is 114 mV and the Tafel slope is 67 mV·dec−1. Ru/C-2 catalyst also has good stability. The overpotential that afford the current density of 10 mA cm−2 of 20 wt% Pt/C increased 92 mV while that of Ru/C-2 only increased 50 mV after a 30,000 s chronopotentiometry test. Furthermore, the mass activity of Ru/C-2 catalyst is even better than that of the commercial 20 wt% Pt/C when the overpotential is larger than 0.18 V. This silicon monoxide-mediated strategy may open a new way for the fabrication of high performance electrocatalysts.  相似文献   
8.
Molybdenum sulfide (MoSx) has recently emerged as a promising catalyst for the hydrogen evolution reaction (HER) in water splitting that may replace the noble metal, such as platinum, as a cost-effective and high catalytic materials. It has been reported that two-dimensional structured MoSx exhibit significant amount of exposed S-edge, which can be an active electrocatalytic catalyst for hydrogen production. However, the current reports mainly focusing on the planar electrode, where the catalyst utilization and the number of active sites are limited due to the lower exposed specific surface area (SSA) of supporting electrodes. In this work, we utilize the freeze-drying method to produce a porous three-dimensional (3D) structure assembled by graphene flakes. The as-prepared 3D graphene scaffold shows high surface area, high porosity while low density, which makes it as an ideal conductive electrode for supporting of MoSx catalysts. Moreover, it was found out that the crystallinity of MoSx, controlled by thermolysis temperature of thiosalts precursor ((NH4)2MoS4), shows significantly influence the performance of HER. The optimized annealing temperature for the designed hybrid electrodes (MoSx/3D-graphene) was found to create a lot of active sites, which facilitate the electrocatalytic performance for water splitting (overpotential of 163 mV @10 mA/cm2 and a Tafel slope of 41 mV/dec). The study provides a potential material, which could pave the way for future applications of hydrogen energy.  相似文献   
9.
In this work different amorphous melt-spun Fe-alloys (Fe82B18, Fe80Si10B10, Fe60Co20Si10B10) were investigated as cathode materials for the alkaline electrolysis of water. In particular, the influence of cobalt as well as the metalloids boron and silicon on the activity for the hydrogen evolution reaction (HER) was studied in 1 M KOH at 298 K using cyclic voltammetric, galvanostatic and polarization techniques. The electrocatalytic activity was evaluated in the view of the overpotential. It was found that cyclic voltammetric techniques can be used to activate the melt-spun Fe-alloys strongly. Different cyclic voltammetric activation procedures are discussed and the influence of the sweep rate and the potential window on the HER activity was elucidated. The experimental data indicate that the addition of metalloids and, most importantly, of cobalt improves the HER activity of the materials. Thus, the overpotential can be reduced by 200 mV compared to polycrystalline Ni.  相似文献   
10.
Hydrogen is regarded as a clean and highly efficient renewable energy. The platinum catalytic electrode is widely used in hydrogen evolution reaction (HER), but it has affected its commercial application because of its high cost. Therefore, the study on cost-effective and high-active catalysts toward HER is required to realise large-scale hydrogen production. In this work, we present a novel Pt/NPSSF catalyst prepared by a one-step in-situ deposition of Pt precursor on a nano-porous stainless-steel film (NPSSF) substrate. The prepared catalyst was evaluated in acidic and alkaline conditions for its HER activities. The preliminary results demonstrate that the Pt/NPSSF electrodes have superior catalytic activity for HER. The hydrogen overpotential of Pt/NPSSF is ?70mV (RHE) in the alkaline solution, which is lower than the Pt electrode of ?184mV. At the same time, we also obtained ?71.2 mV of overpotential for the Pt/NPSSF electrode, which is similar to the ?73mV of Pt electrode in the acid solution. The Tafel graphs plotted from the LSV curves indicate the different HER mechanism in the alkaline and acid solution. The HER kinetics of the Pt/NPSSF were studied using EIS. Comparing Pt/NPSSF to Pt electrode, the multi-pore structures of NPSSF and the Pt nanoparticles active sites decrease the charge transfer-resistance for the HER process. The facile preparation, high efficiency and low value of the Pt/NPSSF composite electrodes demonstrate the promising applications in HER.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号