首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9258篇
  免费   1211篇
  国内免费   269篇
电工技术   53篇
综合类   377篇
化学工业   2685篇
金属工艺   234篇
机械仪表   1183篇
建筑科学   102篇
矿业工程   101篇
能源动力   147篇
轻工业   1256篇
水利工程   24篇
石油天然气   246篇
武器工业   10篇
无线电   1024篇
一般工业技术   1830篇
冶金工业   790篇
原子能技术   338篇
自动化技术   338篇
  2024年   25篇
  2023年   142篇
  2022年   186篇
  2021年   433篇
  2020年   344篇
  2019年   349篇
  2018年   284篇
  2017年   366篇
  2016年   352篇
  2015年   375篇
  2014年   557篇
  2013年   582篇
  2012年   724篇
  2011年   776篇
  2010年   591篇
  2009年   601篇
  2008年   507篇
  2007年   525篇
  2006年   491篇
  2005年   355篇
  2004年   321篇
  2003年   298篇
  2002年   225篇
  2001年   154篇
  2000年   160篇
  1999年   135篇
  1998年   127篇
  1997年   109篇
  1996年   97篇
  1995年   92篇
  1994年   66篇
  1993年   62篇
  1992年   57篇
  1991年   46篇
  1990年   41篇
  1989年   29篇
  1988年   24篇
  1987年   20篇
  1986年   17篇
  1985年   16篇
  1984年   25篇
  1983年   12篇
  1982年   7篇
  1981年   10篇
  1980年   3篇
  1976年   4篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
2.
3.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
4.
Here, a fluoride-assisted route for the controlled in-situ synthesis of metal nanoparticles (NPs) (i.e., AgNPs, AuNPs) on polydimethylsiloxane (PDMS) is reported. The size and coverage of the NPs on the PDMS surface are modulated with time and over space during the synthetic process, leveraging the improved yield (10×) and faster kinetics (100×) of NP formation in the presence of F ions, compared to fluoride-free approaches. This enables the maskless preparation of both linear and step gradients and patterns of NPs in 1D and 2D on the PDMS surface. As an application in flexible plasmonics/photonics, continuous and step-wise spatial modulations of the plasmonic features of PDMS slabs with 1D and 2D AgNP gradients on the surface are demonstrated. An excellent spatially resolved tuning of key optical parameters, namely, optical density from zero to 5 and extinction ratio up to 100 dB, is achieved with AgNP gradients prepared in AgF solution for 12 minutes; the performance are comparable to those of commercial dielectric/interference filters. When used as a rejection filter in optical fluorescence microscopy, the AgNP-PDMS slabs are able to reject the excitation laser at 405 nm and retain the green fluorescence of microbeads (100 µm) used as test cases.  相似文献   
5.
6.
The ease of Te sublimation from Bi2Te3-based alloys significantly deteriorates thermoelectric and mechanical properties via the formation of voids. We propose a novel strategy based on atomic layer deposition (ALD) to improve the thermal stability of Bi2Te3-based alloys via the encapsulation of grains with a ZnO layer. Only a few cycles of ZnO ALD over the Bi2Te2.7Se0.3 powders resulted in significant suppression of the generation of pores in Bi2Te2.7Se0.3 extrudates and increased the density even after post-annealing at 500 °C. This is attributed to the suppression of Te sublimation from the extrudates. The ALD coating also enhanced grain refinement in Bi2Te2.7Se0.3 extrudates. Consequently, their mechanical properties were significantly improved by the encapsulation approach. Furthermore, the ALD approach yields a substantial improvement in the figure-of-merit after the post-annealing. Therefore, we believe the proposed approach using ALD will be useful for enhancing the mechanical properties of Bi2Te3-based alloys without sacrificing thermoelectric performance.  相似文献   
7.
Chiral 1,1’-binaphthyl-linked diporphyrin ‘tweezers’ (R)-1/(S)-1 and the corresponding zinc(II) complexes (R)-2/(S)-2 were prepared as chiral host molecules, and their utility for chiral analyses (especially enantiomeric excess (ee) determinations) were evaluated. Tris(1-n-dodecyl)porphyrins were used for the first time as the interacting units. Host capabilities of the diporphyrin tweezers were investigated by titrations with (R,R)- and (S,S)-cyclohexane-1,2-diamine (CHDA). The host molecules could be used as multichannel probes of ee by using UV-vis, circular dichroism (CD), fluorescence emission and 1H nuclear magnetic resonance (1H-NMR) methods. Chiral configurations could also be differentiated using CD or 1H-NMR spectroscopy. All three optical techniques give good resolution of ee with reasonable sensitivity considering the low concentrations used (ca. 10−6 mol·L−1). The ee determination of CHDA enantiomers using NMR spectroscopy is also possible because of the reasonably well separated resonances in the case of (R,R)- and (S,S)-CHDA. Non-metallated (R)-1/(S)-1 hosts could not be used to detect chiral information in a strongly acidic chiral guest. This work demonstrates the utility of 1,1’-binapthyl-linked chiral hosts for chiral analysis of ditopically interacting enantiomers.  相似文献   
8.
《Ceramics International》2021,47(20):28521-28527
Layered O3 type oxides exhibit promising prospects as high-performance cathodes for sodium-ion batteries (SIBs) due to their low cost and high theoretical capacities. Nevertheless, the intrinsic surface composition and bulk structure degradation upon cycling presents a huge obstacle to stable sodium-ion storage/transportation. Besides, the effective surface decoration on layered O3 oxides is still challenging through conventional wet chemical route owing to their extraordinarily high surface sensitivities. Herein, a typical O3 type layered oxide of NaNi0.5Mn0.5O2 (NNMO) was selected and successfully encapsulated by precisely controlled Al2O3 layers via atomic layer deposition (ALD) technology. With the optimally controlled Al2O3 thickness of 3 nm, the surface regulated NNMO delivers a highly reversible capacity of 73.6 mA h g-1, with a significantly improved capacity retention of 68.0% after 300 cycles at 0.5 C, and a superior rate capability of 65.8 mA h g-1 at 10 C. Further air sensitivity tests demonstrate that the protective layer could effectively mitigate the generation of sodium-based impurities on NNMO, and reduce the surface sensitivities. Both chemical and electrochemical aging tests confirm the contribution of Al2O3 coating layer in alleviating ion dissolution as well as stabilizing the structure and morphology of NNMO. Based on regulating the surface of O3 type layered oxides utilizing ALD technique, this work supplies an effective and facile strategy to overcome the challenges from fast structure degradation and electrochemical property decay, which not only highlights the significance and effectiveness of surface engineering in secondary batteries, but also sheds light on accurate interface construction and regulation for active electrode materials, particularly for those sensitive to ambient atmosphere.  相似文献   
9.
Aluminum-doped zinc oxide (ZnO:Al, AZO) electrodes were covered with very thin (∼6 nm) Zn1−xMgxO:Al (AMZO) layers grown by atomic layer deposition. They were tested as hole blocking/electron injecting contacts to organic semiconductors. Depending on the ALD growth conditions, the magnesium content at the film surface varied from x = 0 to x = 0.6. Magnesium was present only at the ZnO:Al surface and subsurface regions and did not diffuse into deeper parts of the layer. The work function of the AZO/AMZO (x = 0.3) film was 3.4 eV (based on the ultraviolet photoelectron spectroscopy). To investigate carrier injection properties of such contacts, single layer organic structures with either pentacene or 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine layers were prepared. Deposition of the AMZO layers with x = 0.3 resulted in a decrease of the reverse currents by 1–2 orders of magnitude and an improvement of the diode rectification. The AMZO layer improved hole blocking/electron injecting properties of the AZO electrodes. The analysis of the current-voltage characteristics by a differential approach revealed a richer injection and recombination mechanisms in the structures containing the additional AMZO layer. Among those mechanisms, monomolecular, bimolecular and superhigh injection were identified.  相似文献   
10.
《Ceramics International》2020,46(6):7122-7130
This study examines three novel approaches for enhancing the thermoelectric (TE) properties of atomic-layer-deposited (ALD) ZnO thin films: 1) Hf-doping, which preserved the crystallinity of ZnO and provided effective phonon scattering owing to Hf's similar atomic radius to and large mass difference with Zn, leading to high power factor (PF) and low thermal conductivity (κ); 2) controlling the distribution of Hf into an alternating scattered phase/clustered phase superlattice, which balanced the high PF of the scattered phases with the low κ of the clustered phases, while providing significant energy-filtering effect to raise the Seebeck coefficient; 3) introducing 18O/16O periodicity into the Hf:ZnO films—by alternately using H216O and H218O as oxidants in the ALD processes, which further suppressed κ without compromising PF. The combination of the three approaches resulted in a maximum improvement in ZT of ~1600% over that of the undoped ZnO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号