首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39840篇
  免费   3944篇
  国内免费   1857篇
电工技术   4230篇
技术理论   1篇
综合类   2301篇
化学工业   6328篇
金属工艺   1591篇
机械仪表   2543篇
建筑科学   1634篇
矿业工程   2994篇
能源动力   1760篇
轻工业   1534篇
水利工程   446篇
石油天然气   5218篇
武器工业   553篇
无线电   4473篇
一般工业技术   2578篇
冶金工业   3285篇
原子能技术   368篇
自动化技术   3804篇
  2024年   116篇
  2023年   502篇
  2022年   904篇
  2021年   1177篇
  2020年   1330篇
  2019年   1032篇
  2018年   927篇
  2017年   1215篇
  2016年   1502篇
  2015年   1486篇
  2014年   2787篇
  2013年   2570篇
  2012年   3203篇
  2011年   3192篇
  2010年   2235篇
  2009年   2173篇
  2008年   1832篇
  2007年   2381篇
  2006年   2233篇
  2005年   2032篇
  2004年   1662篇
  2003年   1654篇
  2002年   1385篇
  2001年   1158篇
  2000年   961篇
  1999年   822篇
  1998年   606篇
  1997年   477篇
  1996年   458篇
  1995年   378篇
  1994年   263篇
  1993年   215篇
  1992年   177篇
  1991年   136篇
  1990年   105篇
  1989年   83篇
  1988年   67篇
  1987年   38篇
  1986年   32篇
  1985年   23篇
  1984年   18篇
  1983年   12篇
  1982年   16篇
  1981年   8篇
  1980年   11篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1959年   3篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Investigation on the miniaturized parallel multichannel-based devices packed with glass beads to improve the mass exchange execution is the critical focal point of the current study. One of the essential parameters to specify the miniaturized devices' flow distribution is the residence time distribution (RTD). In the present context, the RTDs of a liquid tracer were investigated for the air-water multiphase flows (concurrent) across the multichannel-based miniaturized devices (comprising of 11 similar dimensional parallel channels). The devices were variable in height and packed with glass beads. The conductivity estimations generated the RTD curves and were addressed by the axial dispersion model (ADM). The fluid-flow rates differed within the range of 5–23 ml min−1. The axial dispersion coefficients and the rate of the specific energy dispersion were investigated. The effects of pressure difference and geometry on the hydrodynamic attributes and mixing properties were well-illustrated, and the new correlations were suggested.  相似文献   
2.
Garzan oil field is located at the south east of Turkey. It is a mature oil field and the reservoir is fractured carbonate reservoir. After producing about 1% original oil in place (OOIP) reservoir pressure started to decline. Waterflooding was started in order to support reservoir pressure and also to enhance oil production in 1960. Waterflooding improved the oil recovery but after years of flooding water breakthrough at the production wells was observed. This increased the water/oil ratio at the production wells. In order to enhance oil recovery again different techniques were investigated. Chemical enhanced oil recovery (EOR) methods are gaining attention all over the world for oil recovery. Surfactant injection is an effective way for interfacial tension (IFT) reduction and wettability reversal. In this study, 31 different types of chemicals were studied to specify the effects on oil production. This paper presents solubility of surfactants in brine, IFT and contact angle measurements, imbibition tests, and lastly core flooding experiments. Most of the chemicals were incompatible with Garzan formation water, which has high divalent ion concentration. In this case, the usage of 2-propanol as co-surfactant yielded successful results for stability of the selected chemical solutions. The results of the wettability test indicated that both tested cationic and anionic surfactants altered the wettability of the carbonate rock from oil-wet to intermediate-wet. The maximum oil recovery by imbibition test was reached when core was exposed 1-ethly ionic liquid after imbibition in formation water. Also, after core flooding test, it is concluded that considerable amount of oil can be recovered from Garzan reservoir by waterflooding alone if adverse effects of natural fractures could be eliminated.  相似文献   
3.
Mercury, lead, and cadmium are among the most toxic and carcinogenic heavy metal ions (HMIs), posing serious threats to the sustainability of aquatic ecosystems and public health. There is an urgent need to remove these ions from water by a cheap but green process. Traditional methods have insufficient removal efficiency and reusability. Structurally robust, large surface-area adsorbents functionalized with high-selectivity affinity to HMIs are attractive filter materials. Here, an adsorbent prepared by vulcanization of polyacrylonitrile (PAN), a nitrogen-rich polymer, is reported, giving rise to PAN-S nanoparticles with cyclic π-conjugated backbone and electronic conductivity. PAN-S can be coated on ultra-robust melamine (ML) foam by simple dipping and drying. In agreement with hard/soft acid/base theory, N- and S-containing soft Lewis bases have strong binding to Hg2+, Pb2+, Cu2+, and Cd2+, with extraordinary capture efficiency and performance stability. Furthermore, the used filters, when collected and electrochemically biased in a recycling bath, can release the HMIs into the bath and electrodeposit on the counter-electrode as metallic Hg0, Pb0, Cu0, and Cd0, and the PAN-S@ML filter can then be reused at least 6 times as new. The electronically conductive PAN-S@ML filter can be fabricated cheaply and holds promise for scale-up applications.  相似文献   
4.
Recently, researchers have devoted more attention to supercapacitors (SCs) to integrate with batteries in energy storage systems (ESSs) for vehicle applications. In this study, we attempted to characterize the use of SCs in the ESS for a PEM fuel cell vehicle equipped with an alternator to maximize the performance of regenerative braking. We applied lithium-ion batteries (LIBs) and SCs as energy storage devices to examine their effect on ESS. Then we used a hysteresis brake to apply controllable braking force on the flywheel to form hybrid braking (HB) and made efforts to study its behavior to suggest a braking control strategy. We also ran the whole system over the rotational speed to cover the range of driving speed. At last, we sized the SCs for the most commonly used fuel cell electric vehicle (FCEV) in Korea, i.e., Hyundai NEXO, based on the results obtained from the above study by alternator efficiencies.  相似文献   
5.
In the past, thinking of carrying electronic devices inside our bodies was only posed by non-real scenarios. The emergence of insertable devices has changed this. Since this technology is still in its initial development stages, few studies have investigated factors that influence its acceptance. This paper analyzes the predictors of the intention to use non-medical insertable devices in two Latin American contexts. We used partial least squares structural equation modeling to examine whether six constructs predicted intention to use insertable devices. A questionnaire was administered to undergraduate students located in Colombia and Chile (n = 672). We also examined whether these predictors influenced intention differently for both of them. Four common constructs significantly and positively influenced both Chilean and Colombian respondents to use insertable devices (hedonic motivation, habit, performance expectancy, and social influence). Also, the habit has a complementary mediating effect on the relationship between social influence and behavioral intention. By contrast, effort expectations were a positive and significant predictor, but only among Chilean respondents. Findings suggest that when technologies are emerging, well-known predictors of intention (e.g., performance and effort expectations) are less influential than predictors related to self-efficacy (e.g., habit and hedonic motivation). The use of insertable devices has a significant impact on society. Thus, a better understanding of what motivates their use has implications for both academia and industry.  相似文献   
6.
In recent years, artificial intelligence (AI) is being increasingly utilised in disaster management activities. The public is engaged with AI in various ways in these activities. For instance, crowdsourcing applications developed for disaster management to handle the tasks of collecting data through social media platforms, and increasing disaster awareness through serious gaming applications. Nonetheless, there are limited empirical investigations and understanding on public perceptions concerning AI for disaster management. Bridging this knowledge gap is the justification for this paper. The methodological approach adopted involved: Initially, collecting data through an online survey from residents (n = 605) of three major Australian cities; Then, analysis of the data using statistical modelling. The analysis results revealed that: (a) Younger generations have a greater appreciation of opportunities created by AI-driven applications for disaster management; (b) People with tertiary education have a greater understanding of the benefits of AI in managing the pre- and post-disaster phases, and; (c) Public sector administrative and safety workers, who play a vital role in managing disasters, place a greater value on the contributions by AI in disaster management. The study advocates relevant authorities to consider public perceptions in their efforts in integrating AI in disaster management.  相似文献   
7.
As hydrogen refueling stations become increasingly common, it is clear that a high level of economic efficiency and safety is crucial to promoting their use. One way to reduce costs is to use a simple orifice instead of an excess flow valve, which Japanese safety regulations have identified as a safety device. However, there is concern about its effect on refueling time and on risk due to hydrogen leakage. To clarify the effect, we did a study of model-based refueling time evaluation and quantitative risk assessment for a typical refueling station. This study showed that an orifice is an effective alternative safety device. The increase in refueling time was less than 10%, based on simulations using a dynamic physical model of the station. Neither was there a significant difference in the risk between a configuration with excess flow valves and one with an orifice.  相似文献   
8.
This paper proposes a novel method combining Pinch Methodology and waste hydrogen recovery, aiming to minimise fresh hydrogen consumption and waste hydrogen discharge. The method of multiple-level resource Pinch Analysis is extended to the level of Total Site Hydrogen Integration by considering fresh hydrogen sources with various quality. Waste hydrogen after Total Site Integration is further regenerated. The technical feasibility and economy of the various purification approaches are considered, demonstrated with a case study of a refinery hydrogen network in a petrochemical industrial park. The results showed that fresh hydrogen usage and waste hydrogen discharge could be reduced by 21.3% and 67.6%. The hydrogen recovery ratio is 95.2%. It has significant economic benefits and a short payback period for Total Site Hydrogen Integration with waste hydrogen purification. The proposed method facilitates the reuse of waste hydrogen before the purification process that incurs an additional environmental footprint. In line with the Circular Economy principles, hydrogen resource is retained in the system as long as possible before discharge.  相似文献   
9.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
10.
尕斯库勒油田E13油藏已经进入高含水时期,储采失衡加剧,综合含水率达到了80%以上,原油产量下降,经济效益变差。为了提高油藏原油采出程度、改善油藏开发效果,调研了国内外减氧空气驱的机理研究以及现场试验的资料,建立了以油藏真实孔渗饱数据为基础的一维条形地层机理模型,并选取该油藏Y12-27井组进行了减氧空气驱可行性验证。研究表明:纵向顶部减氧空气驱驱油效果优于水驱和氮气驱;驱替压力对原油采出程度影响不大;注水转注气可以提高原油采出程度;对于减氧空气驱,由于低温氧化反应的作用,氧气浓度对原油采出程度有一定影响,但比较微弱,其中,氧气浓度为10%时,驱替结束采出程度最高;尕斯库勒油田E13油藏属于注水开发“双高”油藏,适用于减氧空气驱;对于该油藏Y12-27井组,顶部减氧空气驱驱油效果好于水驱和氮气驱,建议氧气浓度超过10%时采取关井等措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号