首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10776篇
  免费   1278篇
  国内免费   835篇
电工技术   2096篇
综合类   809篇
化学工业   1979篇
金属工艺   994篇
机械仪表   400篇
建筑科学   307篇
矿业工程   100篇
能源动力   560篇
轻工业   302篇
水利工程   69篇
石油天然气   487篇
武器工业   68篇
无线电   1906篇
一般工业技术   1475篇
冶金工业   227篇
原子能技术   409篇
自动化技术   701篇
  2024年   35篇
  2023年   172篇
  2022年   255篇
  2021年   290篇
  2020年   348篇
  2019年   318篇
  2018年   290篇
  2017年   402篇
  2016年   413篇
  2015年   421篇
  2014年   534篇
  2013年   648篇
  2012年   709篇
  2011年   920篇
  2010年   661篇
  2009年   656篇
  2008年   669篇
  2007年   772篇
  2006年   690篇
  2005年   495篇
  2004年   507篇
  2003年   393篇
  2002年   352篇
  2001年   259篇
  2000年   269篇
  1999年   213篇
  1998年   174篇
  1997年   173篇
  1996年   134篇
  1995年   125篇
  1994年   106篇
  1993年   96篇
  1992年   84篇
  1991年   78篇
  1990年   51篇
  1989年   33篇
  1988年   33篇
  1987年   23篇
  1986年   17篇
  1985年   9篇
  1984年   13篇
  1983年   5篇
  1982年   21篇
  1981年   4篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1975年   4篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
3.
在80 MHz~1 GHz频段,单个功率管输出功率能达到100 W以上,为研制输出功率400 W的功率放大器,文中设计了四路功率合成器。该合成器需要实现功率容量大、工作频带宽、体积小的设计目标。在功率容量方面,文中采用悬置带状线结构,其功率容量远远大于微带线结构;在工作频带方面,采用切比雪夫九节阻抗变换器,将工作带宽拓宽为80 MHz~1 GHz;在体积方面,文中合成器的功率合成部分采用Y型节级联实现四路功率合成,阻抗变换部分采用切比雪夫阻抗变换器进行阻抗变换,该结构相较于磁环巴伦功率合成器,不但具有损耗小、平坦度高的优点,而且通过将阻抗变换器设计成曲折的形状,进一步缩小了合成器体积。仿真与实测结果显示该合成器在80 MHz~1 GHz范围内还具有较高的平坦度,合成效率可达90%以上。  相似文献   
4.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
5.
We investigate the effect of dopant random fluctuation on threshold voltage and drain current variation in a two-gate nanoscale transistor. We used a quantum-corrected technology computer aided design simulation to run the simulation (10000 randomizations). With this simulation, we could study the effects of varying the dimensions (length and width), and thicknesses of oxide and dopant factors of a transistor on the threshold voltage and drain current in subthreshold region (off) and overthreshold (on). It was found that in the subthreshold region the variability of the drain current and threshold voltage is relatively fixed while in the overthreshold region the variability of the threshold voltage and drain current decreases remarkably, despite the slight reduction of gate voltage diffusion (compared with that of the subthreshold). These results have been interpreted by using previously reported models for threshold current variability, load displacement, and simple analytical calculations. Scaling analysis shows that the variability of the characteristics of this semiconductor increases as the effects of the short channel increases. Therefore, with a slight increase of length and a reduction of width, oxide thickness, and dopant factor, we could correct the effect of the short channel.  相似文献   
6.
This paper provides a fundamental analysis of a power supply and rectifiers for wireless power transfer using magnetic resonant coupling (MRC). MRC enables efficient wireless power transfer over middle‐range transfer distances. MRC for wireless power transfer should operate at a high frequency in the industry science medical band, such as 13.56 MHz, because the size of the transfer device decreases at higher transfer frequencies. Therefore, the output frequency of the power supply on the transmitting side should be 13.56 MHz. In addition, the rectifier on the receiving side is operated at a high frequency. This paper focuses on the reflected power in the power supply and rectifiers. Thus, the parametric design method is clarified for the power supply, including a low‐pass filter to match the output, the impedance of the power supply with the characteristic impedance of the transmission line. In addition, the effects on the rectifiers of silicon carbide and gallium nitride diodes are confirmed by performing an experiment and a loss analysis.  相似文献   
7.
This study deals with the utility of mini spray dryer process to improve the dispersibility, of graphene oxide(GO) and its application for high-performance supercapacitor. Initially, the neutral solution of GO was obtained using the modified Hummer's method. After this, the prepared GO solution was processed by mini spray dryer to obtain a more purified, lighter, and dispersed form of GO which is named as spray dryer processed GO (SPGO). The SPGO thus obtained showed excellent dispersibility behavior with various solvents, which is not found in case of conventional oven drying. Furthermore, utility of SPGO and its reduced form (r-SPGO) for supercapacitor applications have been investigated. Results obtained from the cyclic voltammetry(CV) analysis, impedance, and charge-discharge behavior of supercapacitor fabricated using r-SPGO shows enhanced features. Therefore, the simple spray dried GO and its reduced form, that is, r-SPGO can be utilized as a potential candidate for the supercapacitor application. Herein, as synthesized SPGO exhibited the specific capacitance of 12.07 and 37.6 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively, at a scan rate of 5 mV/s. On the other hand, reduced form of SPGO, that is, r-SPGO showed the specific capacitance of 27.16 and 230 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively.  相似文献   
8.
《Ceramics International》2019,45(14):16940-16947
Coordination chemistry, bond state and vibrational spectrum of co-substituted microwave dielectric NdNb1-x(Zr0.5W0.5)xO4 ceramics (x = 0.01∼0.05) were investigated. Raman spectra and XRD refinement showed a solid solution was formed. The compressed and elongated chemical bonds are responsible for the variations of crystal parameters and cell volume. Calculated chemical bond parameters indicated bond covalency, lattice energy and Nb-site bond energy act on the fluctuations of the permittivity, quality factor and temperature coefficient, respectively. Meanwhile, the infrared vibrational spectrum is fitted to quantify the contributions of observed IR mode to the intrinsic loss. Compact ceramic possesses excellent properties: εr ∼ 19.2, Q × f ∼ 55282 GHz and τf ∼ -11.36 ppm/°C with x = 0.04, at 1250°C.  相似文献   
9.
A novel glass-ceramic material based on albite type Na-rich feldspar has been synthesized by conventional ceramic process. High crystallinity, >94%?Vol.% is obtained by fast sintering which allows energy saving processing. Albite is the main crystalline phase and tetragonal SiO2 is a secondary phase. Electrical properties were examined by complex impedance, DC measurements, and dielectric breakdown test. Dielectric characterization shows a non-Debye type dielectric behavior with low dielectric constant, 4.6 at 1?MHz, low dielectric losses, (~10?3 at 1?MHz, and a large dielectric strength, ~60?kV/mm), that it is the largest value reported in ceramic insulators. Those dielectric properties are attained by the low glassy phase content in the samples and their unique micro-nanostructure. All these properties make this novel material a very promising candidate in the market of ceramic electrical insulator, highlighting for high-voltage applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号