首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1544篇
  免费   25篇
  国内免费   27篇
电工技术   10篇
综合类   24篇
化学工业   599篇
金属工艺   107篇
机械仪表   25篇
建筑科学   19篇
矿业工程   60篇
能源动力   386篇
轻工业   11篇
水利工程   1篇
石油天然气   7篇
无线电   36篇
一般工业技术   181篇
冶金工业   93篇
原子能技术   19篇
自动化技术   18篇
  2024年   1篇
  2023年   38篇
  2022年   58篇
  2021年   61篇
  2020年   62篇
  2019年   49篇
  2018年   45篇
  2017年   50篇
  2016年   28篇
  2015年   15篇
  2014年   69篇
  2013年   64篇
  2012年   38篇
  2011年   142篇
  2010年   109篇
  2009年   109篇
  2008年   110篇
  2007年   93篇
  2006年   68篇
  2005年   60篇
  2004年   48篇
  2003年   34篇
  2002年   35篇
  2001年   29篇
  2000年   30篇
  1999年   30篇
  1998年   19篇
  1997年   25篇
  1996年   19篇
  1995年   8篇
  1994年   14篇
  1993年   11篇
  1992年   9篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1596条查询结果,搜索用时 78 毫秒
1.
Efficient and sustainable Janus catalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly desirable for future hydrogen production via water electrolysis. Herein we report an active Janus electrocatalyst of amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets on nickel foam (CoMoP/CoP/NF) for efficient electrolysis of alkaline water. As-reported CoMoP/CoP/NF consists of amorphous bimetal phosphide nanosheets doped with crystalline CoMoP/CoP heterostructured nanoparticles on NF. It can efficiently catalyze both HER (η = 127 mV@100 mA cm?2) and OER (η = 308 mV@100 mA cm?2) in alkaline electrolyte with long-term durability. Serving as anode and cathode of water electrolyzer, CoMoP/CoP/NF generates electrolytic current of 10, 50 and 100 mA cm?2 at low voltage of 1.50, 1.59, and 1.67 V, respectively.  相似文献   
2.
The activity of catalysts with various sizes was compared in a fixed-bed Fischer–Tropsch reactor under similar operating conditions by determining the deactivation model. Catalyst size had no impact on the type of deactivation model. The smaller catalyst showed a smaller deactivation constant of catalyst (kd) and a lower deactivation rate in the initial stage. The decline in the activities of the catalyst with a mesh size of 40 was lower than the other catalysts, suggesting its higher long-term stability (ass). Larger catalyst sizes led to the fouling of carbon and heavy hydrocarbons, decreasing the specific surface of the catalyst, thus increasing the pore diffusion resistance and further decrementing the catalyst activities.  相似文献   
3.
The price of cobalt has increased by some 450% in the past two years, mainly due to increasing demand for lithium–ion batteries. With an official 2017 production of 64 kt, the Democratic Republic of Congo produces more than half of the world’s cobalt. African Copperbelt operations have traditionally focused on copper production; however, it has now become imperative to also consider cobalt recovery from these ores. A plethora of processing routes is possible. Most hydrometallurgical flowsheets recover cobalt from the raffinate of the low-grade copper solvent-extraction circuit. Downstream purification processes include sequential precipitation with a variety of reagents, solvent extraction, and ion exchange. Product choices include hydroxide, carbonate, sulfate, and metal cathode. This study assesses technical and economic advantages and limitations of various approaches to the hydrometallurgical processing of cobalt in an African context.  相似文献   
4.
Cobalt-incorporated MCM-41(Co-MCM-41) was used as a heterogeneous catalyst for the ozonation of para-chlorobenzoic acid (p-CBA) in aqueous solution. Cobalt oxide supported on MCM-41(Co/MCM-41) was synthesized for comparison. Their textural properties were elucidated by various characterization techniques to understand the relationship between surface texture and catalytic activity. TOC removal at 60 min reached 91% with Co-MCM-41, 83% with Co/MCM-41 and only 52% with ozone alone, respectively. Observations from diffuse reflection spectroscopy demonstrated that different metal phases were formed in these cobalt-modified molecular sieves samples. Radical scavenger experiments indicated the formation of hydroxyl radicals that were responsible for the effective degradation of p-CBA. An integrated approach to the catalytic mechanism was proposed by considering the variation of pH in the course of ozonation as well as its subsequent influence on the dissociation of targeted compounds and surface charge of the catalyst. In the reusability experiments, the reused Co-MCM-41 was able to regain the same catalytic capability as the fresh one within 5 cycles. X-ray photoelectron spectroscopy results indicated that a part of Co2+ was oxidized to Co3+ after oxidation reaction.  相似文献   
5.
In this study, we investigated the effects of substituting Li+ for Co2+ at the B sites of the spinel lattice on the structural, magnetic and magnetostrictive properties of cobalt ferrites. The Li+ substituted cobalt ferrites, Co1-xLixFe2O4, with x varying from 0 to 0.7 in 0.1 increments, were synthesized with a sol-gel auto-combustion method using the cathode materials of spent Li-ion batteries. X-ray diffraction analysis revealed that all the Co1-xLixFe2O4 nanopowders had a single-phase spinel structure and the lattice parameters decreased with increasing Li+ content, which can be proved by slight shifts towards higher diffraction angle values of the (311) peak. Field emission scanning electron microscopy was used to observe the fractured inner surface of the sintered cylindrical rods and the increased porosity resulted in a decreased magnetostriction. The oxidation states of Co and Fe in the cobalt ferrite samples were examined by X-ray photoelectron spectroscopy. High resolution transmission electron microscopy micrographs showed that most particles were roughly spherical and with sizes of 25–35?nm. Li+ substitution had a strong effect on the saturation magnetization and coercivity, which were characterized with a vibrating sample magnetometer. The Curie temperature was reduced due to the decrease in magnetic cations and the weakening of the exchange interactions. The magnetostrictive properties were influenced by the incorporation of Li+ at the B sites of the spinel structure and correlated with the changes in porosity, magnetocrystalline anisotropy and the cation distribution.  相似文献   
6.
Porous carbon nanostructures are promising supports for stabilizing the highly dispersed metal nanoparticles and facilitating the mass transfer during the reaction, which are critical to achieve the high efficiency of hydrogen generation from sodium borohydride dehydrogenation. Herein, the catalytically active porous architectures are simply prepared by using 2-methylimidazole and melamine as reactive sources. The structural and compositional characterizations reveal the coexistence of metallic cobalt and N-doped carbon in porous architectures. Electron microscopy observations indicate that the synthesized products are smartly constructed from the carbon nanosheets with densely dispersed Co nanoparticles. Due to the notable structural features, the prepared Co@NC-600 sample presents the highly efficient activity for catalytic hydrolysis of NaBH4 with a hydrogen generation rate of 2574 mL min−1 gcat−1 and an activation energy of 47.6 kJ mol−1. The catalytically active metallic Co and suitable support-effect of N-doped carbon are responsible for catalytic dehydrogenation.  相似文献   
7.
Formation of cobalt sulfide hollow nanocrystals through a mechanism similar to the Kirkendall Effect has been investigated in detail. It is found that performing the reaction at > 120 °C leads to fast formation of a single void inside each shell, whereas at room temperature multiple voids are formed within each shell, which can be attributed to strongly temperature‐dependent diffusivities for vacancies. The void formation process is dominated by outward diffusion of cobalt cations; still, the occurrence of significant inward transport of sulfur anions can be inferred as the final voids are smaller in diameter than the original cobalt nanocrystals. Comparison of volume distributions for initial and final nanostructures indicates excess apparent volume in shells, implying significant porosity and/or a defective structure. Indirect evidence for fracture of shells during growth at lower temperatures was observed in shell‐size statistics and transmission electron microscopy images of as‐grown shells. An idealized model of the diffusional process imposes two minimal requirements on material parameters for shell growth to be obtainable within a specific synthetic system.  相似文献   
8.
A method to produce monodisperse magnetic composite spheres with diameters from less than 100 nm to more than 1 μm in water solution is reported. The spheres consist of a dielectric silica core and a cobalt/cobalt oxide shell which can be protected from further oxidation with an outer shell of silica or, alternatively, they can be covered with the polymer polyvinylpyrrolidone as a stabilizer. The formation of a uniform magnetic shell proceeds with the adsorption of metallic cobalt seeds, produced by the reduction of cobalt chloride with sodium borohydride, on a self‐assembled layer of polyelectrolytes on the silica core. In the second step, an outer silica shell can be formed by the hydrolysis and condensation of (3‐aminopropyl)trimethoxysilane and tetraethoxysilane. The double‐shell composite spheres show excellent sphericity, monodispersity, and a magnetic hysteresis loop at room temperature.  相似文献   
9.
流动注射分光光度法测定钴   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了将PAN用于流动注射(FIA)分光光度法测定微量钴,在560nm处绘制标准曲线,线性范围为0~45μg/ml,相关系数0.996,方法的相对标准偏差(RSD)小于3%,加标回收率为95%~105%,进样频率80次/h。本法简单快速,用于面粉、分子筛,铝合金测定结果令人满意。  相似文献   
10.
从含钴催化剂废料中回收氧化钴的研究   总被引:1,自引:0,他引:1  
选用酸溶——沉淀化学法,对含钴催化剂废料提取氧化钴的实验研究。实验结果表明,回收氧化钴产品中含钴量71%,氧化钴的实收率85%。同时将铁回收为铁红产品(含Fe2O3≤65%),铁的实收率高达88%。其它的技术经济指标较高。这是一种工艺技术及设备可行的新途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号