首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   22篇
  国内免费   5篇
综合类   7篇
化学工业   236篇
金属工艺   7篇
机械仪表   5篇
能源动力   7篇
轻工业   12篇
石油天然气   3篇
武器工业   1篇
无线电   4篇
一般工业技术   61篇
冶金工业   5篇
原子能技术   13篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   10篇
  2020年   8篇
  2019年   10篇
  2018年   11篇
  2017年   6篇
  2016年   9篇
  2015年   13篇
  2014年   14篇
  2013年   28篇
  2012年   25篇
  2011年   17篇
  2010年   20篇
  2009年   29篇
  2008年   15篇
  2007年   19篇
  2006年   21篇
  2005年   19篇
  2004年   12篇
  2003年   12篇
  2002年   9篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1993年   3篇
  1992年   1篇
  1989年   2篇
排序方式: 共有361条查询结果,搜索用时 31 毫秒
1.
A SAXS method for the quantitative assessment of the morphology of polymer layered silicate nanocomposites is proposed. Fitting the SAXS patterns, the number of clay layers, the periodicity of the layers in the tactoids, the thickness of the regions interposed between the clay platelets and their distributions can be measured. A good agreement with TEM data was obtained, avoiding the inconsistencies with microscopical observations often reported in the literature.  相似文献   
2.
This work demonstrated a novel and potentially important application of two-dimensional small-angle X-ray scattering (2D-SAXS) to investigate powder compaction. SAXS from powder compacts of three materials commonly used for pharmaceutical tabletting exhibited azimuthal variations, with stronger intensity in the direction of the applied compaction force, relative to the transverse direction. This implied that compaction of a (macroscopic) powder could also produce changes on the molecular (nanometre) scale, which can be probed by 2D-SAXS. Two possible explanations for this effect were suggested. A combination of anisometric (i.e. elongated or flattened) granules with anisotropic morphologies could result in azimuthal variation in X-ray scattering due to granule orientation. It is expected that this mechanism would require relatively low packing density, so may operate during die filling. Granule re-orientation appeared less likely at higher packing densities and compaction pressures, however. Under these conditions, the changes in the 2D-SAXS patterns would be consistent with the powder granules becoming relatively flattened in the compression direction, with corresponding changes in their nano-scale morphology. The magnitude of this effect was found to vary between the materials used and increased with compaction pressure. This suggested that 2D-SAXS studies could provide useful information on force-transmission within a compressed powder. Further analysis of the data also suggested differences in the compaction mechanisms (i.e. granule re-orientation, deformation or fragmentation) between the materials studied.  相似文献   
3.
Structure–property relationships in poly(urethane urea)s synthesized with ultra‐low monol content poly(propylene glycol) soft segments were investigated as soft segment molecular weight (2000, 4000, and 8000 g/mol) and hard segment content (6.3 and 9.0 wt %) were varied. Morphological features such as interdomain spacing and interphase thickness were quantified and revealed with small‐angle X‐ray scattering (SAXS) and atomic force microscopy (AFM). The thermal and mechanical behavior was assessed with a dynamic mechanical analyzer (DMA) and by differential scanning calorimetry (DSC) and stress‐strain tests. Hard segment content, over the limited range studied, had little effect on the morphology and soft segment thermal and mechanical properties. The molecular weight of the soft segments had considerably more influence on the morphology and mechanical properties. Increasing soft segment molecular weight resulted in greater interdomain spacings, as shown by SAXS, and a noticeable change in the structure, as shown by AFM. Additionally, as soft segment molecular weight decreased the soft segment glass transition broadened and rose to higher temperatures. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 229–243, 2002; DOI 10.1002/app.10168  相似文献   
4.
Summary: The cold crystallization process of initially amorphous poly(L ‐lactic acid), PLLA, with two different molecular weights, during a heating at 2 °C/min, was investigated by DSC and time‐resolved simultaneous SAXS and WAXS, using synchrotron radiation. Equatorial scans of the isotropic 2D‐SAXS patterns showed that the average Bragg long period (LB) of PLLA samples was approximately constant with the development of cold crystallization up to a temperature that corresponded to a melt/re‐crystallization process that took place before the nominal melting peak seen by DSC. LB values were found to be higher for the high molecular weight material. This was in accordance with the higher melting temperature observed in the high molecular weight PLLA that implied the existence of thicker lamellae. WAXS results showed that the molecular weight did not apparently affect the crystal form and the final degree of crystallinity of PLLA. The Avrami parameters from WAXS and DSC were consistent, showing that the non‐isothermal cold crystallization of the two PLLA samples corresponded mainly to a three‐dimensional growth, although an imperfect crystallization process was involved at early times. The crystallization rate of PLLA, observed both by WAXS and DSC, decreased with increasing molecular weight.

SAXS profiles of PLLA2 as a function of temperature. The inset shows the 2D‐SAXS pattern obtained at 180 °C.  相似文献   

5.
Small‐angle X‐ray scattering (SAXS) was applied to investigate the microstructure of unmodified and modified porous commercial suspension‐type poly(vinyl chloride) (PVC) particles. The modified PVC particles were prepared by an in situ stabilizer‐free polymerization/crosslinking of particles absorbed with a monomer/crosslinker/peroxide solution. The modifying polymers include styrene with or without divinyl benzene (DVB) as a crosslinker and methyl methacrylate (MMA) with or without ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The SAXS method was used to highlight the effect of polystyrene (PS) on the microstructure of PVC particles and to evaluate the characteristic lengths, both in the PVC/PS and the PVC/XPS (PS crosslinked with 0 and 5% DVB, respectively) systems. A model is suggested, where during the synthesis modification process, swelling of PVC by styrene and styrene polymerization occur simultaneously. PVC swelling by styrene causes destruction of the PVC subprimary particles, whereas styrene polymerization leads to phase separation resulting from incompatibility of the polymers. It was further suggested that because of PVC swelling by styrene, structure of the subprimary particles is lost. Therefore the characteristic lengths of PVC/PS and PVC/XPS, as calculated from the SAXS measurements, were attributed to the size of the phase‐separated PS and XPS inclusions, respectively. The SAXS method also shows that PMMA and XPMMA do not influence the PVC microstructure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1024–1031, 2005  相似文献   
6.
The lamellar morphology of a melt-miscible blend consisting of two crystalline constituents, poly(3-hydroxybutyrate) (PHB) and poly(ethylene oxide) (PEO) have been investigated by means of small angle X-ray scattering (SAXS). The blend was a crystalline/amorphous system when temperatures lay between the melting point of PEO (ca. T m PEO=60C) and that of PHB (ca. T m PHB=170C), while it became a crystalline/crystalline system below T m PEO. The crystalline microstructures of the blends were induced by two types of crystallization history, i.e. one-step and two-step crystallizations. In the one-step crystallization, the blends were directly quenched from the melt to room temperature to allow simultaneous PHB and PEO crystallization. The two-step crystallization involved first cooling to 70C to allow PHB crystallization for 72 h followed by cooling to room temperature (ca. 19C) to allow PEO crystallization. In the crystalline/crystalline state, two scattering peaks have been observed in the Lorentz-corrected SAXS profiles, irrespective of the crystallization histories, meaning that crystallization created separate PHB and PEO lamellar stack domains. One-step crystallization yielded lamellar stack domains containing almost pure PHB and PEO lamellae. Two-step crystallization generated almost pure PHB lamellar domains and the PEO lamellar domains with inserted PHB lamellae. In the crystalline/amorphous state, the composition dependence of the amorphous layer thickness (l a), the presence of zero-angle scattering, and the volume fraction of the PHB lamellar stack (s) revealed that both one-step and two-step crystallizations, generated the interfibrillar segregation morphology, where the extent of interfibrillar segregation of amorphous PEO increased with increasing PEO content.  相似文献   
7.
Polyamide 6 (PA6) isotropic films and oriented cables were prepared by compression molding or by consecutive extrusion and cold‐drawing. These samples were isothermally annealed in the 120–200°C range and were then subjected to tensile tests at room temperature. Synchrotron wide‐angle X‐ray scattering (WAXS) and small‐angle X‐ray scattering (SAXS) patterns were obtained before and after mechanical failure. These data were related with the mechanical properties of the respective PA6 samples. The annealing of isotropic PA6 resulted in an increase in the Young's modulus (E) and yield stress (σy) values, which was attributed to the observed proportional reduction of the d‐spacings of the intersheet distances in both the α‐PA6 and γ‐PA6 polymorphs. Analysis of the WAXS and SAXS patterns of isotropic PA6 after break allowed the supposition of structural changes in the amorphous phase, with these being better pronounced with increasing annealing temperature; this made the samples less ductile. In oriented PA6 samples, annealing resulted in a drastic increase in the E and σy values accompanied by a phase transition from γ‐PA6 to α‐PA6 and a well‐pronounced reduction in the intersheet distances of both polymorphs. The stretching of the oriented samples led to an additional γ‐to‐α transition, whose extent was also related to structural changes in the amorphous phase. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2242–2252, 2007  相似文献   
8.
Relationships between the macroscopic deformation behaviour and microstructure of a pure (PBT-b-PTMO) block copolymer and a polymer nanocomposite (PBT-b-PTMO + 0.2 wt% SWCNT) were investigated by simultaneous small- and wide-angle X-ray scattering (SAXS and WAXS) during tensile deformation using synchrotron radiation. The Young's modulus was found to be 15% higher for the nanocomposite than for the pure block copolymer as well as the yield strength, while the elongation-to-break was less than a half. This different behaviour can be explained by taking into account the different structural features revealed by SAXS and WAXS and thus considering that SWCNT act as anchors in the nanocomposite, sharing the applied stress with the PBT crystals and partially preventing the flexible, non-crystallisable PTMO chains to elongate.  相似文献   
9.
Extensive morphological studies on a syndiotactic polystyrene (sPS) sample prepared from compression molding were carried out using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). SAXS was conducted at 25C as well as at 150C to enhance the scattering contrast in order to obtain more reliable morphological parameters. The compression-molded sample was crystallized into a orthorhombic crystal lattice characterized by wide-angle X-ray diffraction (WAXD). A similar weight fraction of crystallinity, ca. 0.37, was obtained from both WAXD and differential scanning calorimetry measurements.In addition to the scattering peak at a scattering vector of ca. 0.36 nm–1 attributable to the presence of lamellar/amorphous layers, anomalous scattering at the zero angle was found from the SAXS intensity profiles. Based on the Debye–Bueche theory, the scattering profile of this peculiar zero-angle scattering was deduced and was subtracted from the raw intensity profile to obtain the intensity profile exclusively associated with the lamellar/amorphous structure. A consistent long period was obtained for SAXS measured either at 25 or 150C, provided that the appropriate subtraction of intensities due to the zero-angle scattering was conducted. Moreover, the lamellar thickness deduced from the one-dimensional correlation function was in good agreement with TEM results. A difference scattering pattern derived from SAXS measured at 150 and 25C was obtained and a comparison of the morphological parameters was provided as well.  相似文献   
10.
不同线密度粘胶原丝及其碳纤维的结构性能对比   总被引:1,自引:0,他引:1  
用Weibull分析处理 10mm长的 4种不同线密度粘胶原丝和相应碳纤维的单丝断裂强度 ,得到原丝线密度、强度分布和碳纤维强度的对应关系。采用透射电镜 (TEM )和小角X散射 (SAXS)分析粗旦原丝 ,发现孔洞较多 ,并存在大于 70nm的大孔洞。截面和表面照片也揭示出细旦原丝截面相对规整 ,表面较光滑 ,粗旦原丝则反之。结果表明 ,原丝线密度小 ,截面形状圆整 ,缺陷少 ,所制得的碳纤维强度高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号