首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   31篇
  国内免费   7篇
电工技术   50篇
综合类   13篇
化学工业   108篇
金属工艺   18篇
机械仪表   2篇
矿业工程   2篇
能源动力   224篇
石油天然气   4篇
无线电   32篇
一般工业技术   62篇
冶金工业   3篇
自动化技术   1篇
  2024年   2篇
  2023年   32篇
  2022年   53篇
  2021年   51篇
  2020年   52篇
  2019年   40篇
  2018年   24篇
  2017年   15篇
  2016年   11篇
  2015年   7篇
  2014年   14篇
  2013年   10篇
  2012年   19篇
  2011年   24篇
  2010年   20篇
  2009年   17篇
  2008年   17篇
  2007年   27篇
  2006年   17篇
  2005年   8篇
  2004年   14篇
  2003年   12篇
  2002年   11篇
  2001年   3篇
  2000年   8篇
  1999年   4篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
排序方式: 共有519条查询结果,搜索用时 31 毫秒
1.
The speed of the oxygen evolution reaction seriously affects the hydrogen production efficiency of water electrolysis. Hence it is crucial to develop efficient and durable OER electrocatalysts. Construction of heterojunction catalysts is also one of the strategies to develop efficient catalysts. In this paper, a pea-like Cu/Cu2S–C3 Mott?Schottky electrocatalyst was self-constructed by vapor deposition, while CF (copper foam) was used as substrate material and copper source, and thiourea was served as sulfur source. The built-in electric field is formed at the metal-semiconductor interface, which endows it with promising electrocatalytic performance. As the working electrode, the overpotentials of Cu/Cu2S–C3 required to reach the current density of 10 and 50 mA cm?2 were about 170 and 335 mV. The impact of the Mott-Schottky structure on the catalyst was also reflected in stability. The i-t tests of the sample Cu/Cu2S–C3 were carried out under 10 and 60 mA cm?2 and performed well.  相似文献   
2.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
3.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
4.
Sulfured doped carbon electrocatalysts is synthesized from the waste biomass Sargassum spp. Two doping procedures are examined to determine which is better for Oxygen Reduction Reaction (ORR); one by doping biocarbon obtained from the pyrolysis of the biomass and the second through a process of in situ doping in autoclave. The electrocatalyst are obtained from pyrolysis of the sample at 700 °C, which is finally characterized as a metal free electrocatalyst for the ORR. The electrocatalyst are characterized by BET surface area analysis, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and the electrochemical characterization is determined in 0.1 M KOH. The sample SSKPT-1 exhibits a promising electrocatalytic activity with an onset potential of 0.896 V vs RHE and a current density of 5 mA cm?2 (at 0.2 V vs. RHE) which could be partly attributed to its high BET surface area of 2755 m2 g?1.  相似文献   
5.
In the present research, nanostructured Pd–Cd alloy electrocatalysts with different compositions were produced using the electrodeposition process. The morphology of the samples was studied by scanning electron microscopy analysis. Also, the elemental composition of the samples was determined by energy-dispersive X-ray spectroscopy and elemental mapping tests. Tafel polarization and electrochemical impedance spectroscopy methods were employed to determine the electrochemical corrosion properties of the synthesized samples in a solution containing 0.5 M sulfuric acid and 0.1 M formic acid. The linear sweep voltammetry, cyclic voltammetry, and chronoamperometry techniques were also employed to evaluate the electrocatalytic activity of prepared samples toward the oxidation of formic acid. In this respect, the influence of some factors such as formic acid and sulfuric acid concentrations and also potential scan rate was investigated. Compared to the pure Pd sample, the Pd–Cd samples were more reactive for the oxidation of formic acid. Besides, the sample with a lower amount of Pd (Pd1·3Cd) demonstrated much higher electrocatalytic activity than the Pd7·1Cd and Pd2·1Cd samples. The observed high mass activity of 15.06 A mg?1Pd for the Pd1·3Cd sample which is 21.1 times higher than Pd/C is an interesting result of this study.  相似文献   
6.
高分散度Pt/C电催化剂的制备   总被引:3,自引:1,他引:2  
Cabot公司Vulcan XC-72型炭黑,经过H2O2氧化处理后作为Pt的载体,H2PtCl6作为金属前驱体制备了高度分散的Pt/C催化剂。讨论了不同条件下H2PtCl6在炭黑上的吸附性能。载体经过H2O2氧化处理24h,H2PtCl6在pH=9下吸收48h,H2 350℃还原2h,可以制备出铂晶粒平均大小为1.8nm的Pt/C电催化剂。  相似文献   
7.
高效、清洁的氢能被认为是化石能源最有潜力的替代能源之一。制氢方法中电解水制氢是非常简便、且易于规模化的一种方法,但是电解水过程中存在制氢能耗增加、成本升高等问题,因此制备能耗低、具有稳定催化效率的催化剂成为能源领域的研究热点。层状双金属氢氧化物(LDHs)由于具有独特的二维层状结构,使其组成易于调节、结构易于调控,因此具有高效的电催化活性。但是,LDHs存在尺寸大、厚度高的问题,导致电催化剂的活性位点的数目受限、本征活性低和电导率低,最终会影响LDHs的电催化性能。主要论述了LDHs的结构和电解机理以及作为电解水催化剂的研究现状,对目前存在的问题以及解决方法进行了归纳,并对未来的研究方向进行了展望。  相似文献   
8.
We use cyclic voltammetry (CV) on fuel cell electrodes to elucidate the important differences between adsorbates resulting from carbon monoxide adsorption and methanol adsorption onto commercial Pt/C electrocatalysts in a sulfuric acid electrolyte. Under open circuit conditions, methanol was found to adsorb preferentially onto the Pt sites associated with “strongly bound” hydrogen. The sites associated with “weakly bound” hydrogen adsorbed methanol more slowly. In the case of CO adsorption, which requires no adsorbate dehydrogenation, all adsorption sites showed similar affinity towards the adsorbate. Electrochemical oxidation of the adsorbates derived from both methanol and CO exposure exhibit slower oxidation when the adsorbate is associated with cubic-packed-like sites than from close-packed-steps and other sites. NMR of a 13CO-adlayer prepared by electrochemical adsorption from low concentration 13CH3OH shows a lower NMR shift and smaller linewidth than the previously reported values for electrochemically adsorbed 13CO gas. These results are interpreted in terms of adsorbate motion on the electrocatalyst surface.  相似文献   
9.
A method for producing electrocatalysts containing silver supported on different carbons was developed. The catalysts were investigated in air (oxygen) diffusion electrodes in alkaline electrolyte (7 M KOH). Depending on the carbon support used, up to a threefold improvement in electrode performance was achieved compared with the activity of the uncatalysed carbon in this media. At ambient temperature and atmospheric pressure, a current density of 150 mA/cm–2 was obtained at electrode potential 1.2 V vs zinc (0.75 vs HE). A correlation between electro catalytic activity and wetted surface area of the electrocatalysts was found.  相似文献   
10.
The electrocatalytic oxidation of methanol was investigated on PtRu electrodes of different atomic compositions at several temperatures (from 25 to 110 °C). Very active catalyst nanoparticles supported on active carbon (Vulcan XC 72) were obtained using the colloidal synthesis developed by Bönnemann et al. [11], allowing easy variation of the atomic composition. These electrocatalysts were characterized by TEM, EDX and XRD; results indicate that they consist of platinum nanoparticles decorated by ruthenium. Methanol oxidation was studied as a function of composition, temperature and methanol concentration. Two effects were investigated: the effect of the working temperature and the effect of the atomic composition. It appeared that for lower methanol electrooxidation overvoltages, the best catalysts are ruthenium-rich, whereas at higher overvoltages the best one is the Pt + Ru (80:20)/C composition, irrespective of the working temperature, either in half-cell or in a single DMFC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号