首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131943篇
  免费   13517篇
  国内免费   8220篇
电工技术   15066篇
综合类   11407篇
化学工业   20541篇
金属工艺   11210篇
机械仪表   7317篇
建筑科学   11152篇
矿业工程   5632篇
能源动力   6113篇
轻工业   10129篇
水利工程   4114篇
石油天然气   5935篇
武器工业   1256篇
无线电   9314篇
一般工业技术   14940篇
冶金工业   6977篇
原子能技术   1943篇
自动化技术   10634篇
  2024年   436篇
  2023年   2172篇
  2022年   3489篇
  2021年   4446篇
  2020年   4573篇
  2019年   4053篇
  2018年   3815篇
  2017年   4726篇
  2016年   5102篇
  2015年   5263篇
  2014年   7644篇
  2013年   8194篇
  2012年   9387篇
  2011年   10185篇
  2010年   7180篇
  2009年   7801篇
  2008年   6908篇
  2007年   8665篇
  2006年   7864篇
  2005年   6589篇
  2004年   5680篇
  2003年   4844篇
  2002年   3962篇
  2001年   3435篇
  2000年   2990篇
  1999年   2523篇
  1998年   2036篇
  1997年   1787篇
  1996年   1546篇
  1995年   1212篇
  1994年   1084篇
  1993年   816篇
  1992年   758篇
  1991年   561篇
  1990年   409篇
  1989年   329篇
  1988年   236篇
  1987年   158篇
  1986年   141篇
  1985年   116篇
  1984年   132篇
  1983年   98篇
  1982年   101篇
  1981年   35篇
  1980年   47篇
  1979年   39篇
  1978年   13篇
  1977年   15篇
  1959年   16篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
1.
The article investigates the finite-time adaptive fuzzy control for a class of nonlinear systems with output constraint and input dead-zone. First, by skillfully combining the barrier Lyapunov function, backstepping design method, and finite-time control theory, a novel adaptive state-feedback tracking controller is constructed, and the output constraint of the nonlinear system is not violated. Second, the fuzzy logic system is used to approximate unknown function in the nonlinear system. Third, the finite-time command filter is introduced to avoid the problem of “complexity explosion” caused by repeated differentiations of the virtual control signal in conventional backstepping control schemes. Meanwhile, a new saturation function is added in the compensating signal for filter error to improve control accuracy. Finally, based on Lyapunov stability analysis, all the signals of the closed-loop are proved to be semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood region of the origin in a finite time. A simulation example is presented to demonstrate the effectiveness for the proposed control scheme.  相似文献   
2.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   
3.
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently, which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure (EWP). By means of a three-dimensional (3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system (TDS) widely used in China and its optimized drainage system (ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice, including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 kPa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.  相似文献   
4.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
5.
《Ceramics International》2022,48(12):16730-16736
Recently, all-inorganic cesium lead-halide perovskites have shown their promise for light emission applications, due to the excellent optical performance. Herein, we report that the initially nonphosphorescent undoped lead-halide Cs4PbBr6 single crystals (SCs) exhibit an ultralong phosphorescence emission under X-ray excitation at low temperatures. It is shown that the dramatic change has been taken place in radioluminescence spectra and the broad-band emission gradually appeared with the decrease of temperature. Below 210 K, the radioluminescence spectra can be deconvoluted into one narrow peak located at 530 nm and two broad peaks centered at 595 nm and 672 nm respectively. Subsequently, the time-dependent radioluminescence spectra in undoped lead-halide Cs4PbBr6 SCs were investigated. The ultralong phosphorescence emission can persist over 120 min at 70 K. We consider that ultralong phosphorescence originates from defect-related emission. To the best of our knowledge, our finding is the first time that undoped Cs4PbBr6 SCs exhibit the phosphorescence emission, which will offer a paradigm to motivate revolutionary applications on perovskite.  相似文献   
6.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
7.
ABSTRACT

Absorbed-dose estimation is essential for evaluation of the radiation tolerance of minor-actinide-separation processes. We propose a dose-evaluation method based on radiation permeability, with comparisons of heterogeneous structures seen in the solvent-extraction process, such as emulsions forming in the mixture of the organic and aqueous phases. A demonstration of radiation-energy-transfer simulation is performed with a focus on the minor-actinide-recovery process from high-level liquid waste with the aid of the Monte Carlo radiation-transport code PHITS. The simulation results indicate that the dose absorbed by the extraction solvent from alpha radiation depends upon the emulsion structure, and that from beta and gamma radiation depends upon the mixer-settler-apparatus size. Non-negligible contributions of well-permeable gamma rays were indicated in terms of the plant operation of the minor-actinide-separation process.  相似文献   
8.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
9.
By choosing a triple block polymer, poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), as the backbone and adopting a long side-chain double-cation crosslinking strategy, a series of SEBS-based anion-exchange membranes (AEMs) was successively synthesized by chloromethylation, quaternization, crosslinking, solution casting, and alkalization. The 70C16-SEBS-TMHDA membrane showed high OH conductivity (72.13 mS/cm at 80 °C) and excellent alkali stability (only 10.86% degradation in OH conductivity after soaking in 4-M NaOH for 1700 h at 80 °C). Furthermore, the SR was only 9.3% at 80 °C and the peak power density of the H2/O2 single cell was up to 189 mW/cm2 at a current density of 350 mA/cm2 at 80 °C. By introducing long flexible side chains into a polymer SEBS backbone, the structure of the hydrophilic–hydrophobic microphase separation in the membrane was constructed to improve the ionic conductivity. Additionally, network crosslinked structure improved dimensional stability and mechanical properties.  相似文献   
10.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号