首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3699篇
  免费   245篇
  国内免费   153篇
电工技术   154篇
综合类   148篇
化学工业   1666篇
金属工艺   426篇
机械仪表   75篇
建筑科学   11篇
矿业工程   30篇
能源动力   97篇
轻工业   97篇
水利工程   2篇
石油天然气   33篇
武器工业   15篇
无线电   161篇
一般工业技术   939篇
冶金工业   189篇
原子能技术   30篇
自动化技术   24篇
  2024年   20篇
  2023年   75篇
  2022年   54篇
  2021年   107篇
  2020年   128篇
  2019年   136篇
  2018年   160篇
  2017年   149篇
  2016年   121篇
  2015年   116篇
  2014年   137篇
  2013年   246篇
  2012年   229篇
  2011年   258篇
  2010年   208篇
  2009年   229篇
  2008年   184篇
  2007年   239篇
  2006年   242篇
  2005年   252篇
  2004年   188篇
  2003年   190篇
  2002年   130篇
  2001年   80篇
  2000年   59篇
  1999年   42篇
  1998年   33篇
  1997年   19篇
  1996年   15篇
  1995年   9篇
  1994年   10篇
  1993年   8篇
  1992年   9篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有4097条查询结果,搜索用时 359 毫秒
1.
In this work, TiO2 nanoparticles are surface modified by NH2-terminated organic moieties arised from 4,4′-methylene diphenyl diisocyanate (MDI). These nanoparticles are incorporated into ether-based segmented polyurethane (SPU) matrix. MDI is utilized as monomer together with poly(tetramethylene oxide) (PTMO) comonomer for preparing the final polymer as well. The NH2-functionalized TiO2 nanoparticles are covalently linked to the NCO terminals of the resulting SPU macromolecules during film preparation stage. Therefore, in addition to butylene glycol, these surface modified nanoparticles with enhanced organophilicity could play the role of the second chain extender of NCO-capped SPU macromolecules through formation of urea linkages. Optical and thermal behaviors of the transparent and flexible film (SPU/TiO2–MDI) is compared with those of unmodified TiO2 (SPU/TiO2) and TiO2-unloaded SPU films. Though the particle loading is only 5 wt.%, incorporation of TiO2 and TiO2–MDI nanoparticles into the SPU polymer enhances significantly the light absorption in UV region at 300–400 nm. SEM images of the prepared films clearly show a considerable decrease in particle aggregation for TiO2–MDI into SPU matrix compared to that of unmodified TiO2. TG analyses indicate a one-step decomposition pattern with onset temperatures of about 360 and 380 °C for neat SPU and SPU/TiO2–MDI, respectively. Moreover, DTA thermograms of both nanocomposites show obviously two exothermic phase transitions in the thermal range of 330–440 °C.  相似文献   
2.
Polyethersulphone (PES) is an aromatic thermoplastic, at low environmental impact, evaluated in this work as a promising candidate for new polymer electrolytes in the PEMFCs technology. A sulfonation procedure has been tuned in order to graft sulfonic acid groups on the polymer chains (sPES) and to make it hydrophilic. Homogeneous membranes with different polymer's sulfonation degrees (SD%) have demonstrated excellent mechanical properties and very low permeability toward methanol (important in the DMFCs), even if low proton conductivity. Nanocomposite sPES membranes were prepared by dispersion of highly hydrophilic lamellar particles such as layered double hydroxide (LDH) in the polymer. Deep investigations performed by a combination of PFG-NMR, EIS, XRD, DMA, and scanning electron microscopy have evidenced the exfoliation of the lamellae in polymer matrix. However, a certain anisotropy was evidenced both in the morphology and molecular diffusion, favored in the longitudinal direction (parallel to surface), while completely inhibited in the cross-section. This finding is most likely induced by the polymer structure, therefore particular attention must be paid to the choice of the filler and preparation of the composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47884.  相似文献   
3.
This study investigates the preparation of polyetherimide (PEI) – LaNi5 composites films for hydrogen storage. Prior to the polymer addition, LaNi5 was ball-milled at different conditions (250, 350, and 450 RPM) and annealed at 500 °C for 1 h under vacuum. The composites were produced with BM-LaNi5-350 (PEI/LaNi5-350) and annealed BM-LaNi5-350 (PEI/LaNi5-350-TT). Membranes were successfully produced through solvent casting assisted by an ultrasonic bath. The particles dispersion and the film morphology did not change after hydrogenation cycles. In the H2 sorption experiments at 43 °C and 20 bar, the films stored H2 without incubation time; both samples reached a capacity of ~0.6 wt%. The H2 sorption kinetics of PEI/LaNi5-350 was comparable to that of BM-LaNi5-350, whereas PEI/LaNi5-350-TT presented significantly slower kinetics. LaNi5 oxidation was hindered by PEI, showing that it can be explored to improve metal hydrides air resistance. The results demonstrated that PEI films filled with LaNi5 are promising materials for hydrogen storage.  相似文献   
4.
Hydrogels, nanogels and nanocomposites show increasing potential for application in drug delivery systems due to their good chemical and physical properties. Therefore, we were encouraged to combine them to produce a new compound with unique properties for a long‐term drug release system. In this regard, the design and application of a nanocomposite hydrogel containing entrapped nanogel for drug delivery are demonstrated. To this aim, we first prepared an iron oxide nanocomposite nanogel based on poly(N‐isopropylacrylamide)‐co‐((2‐dimethylaminoethyl) methacrylate) (PNIPAM‐co‐PDMA) grafted onto sodium alginate (NaAlg) as a biocompatible polymer and iron oxide nanoparticles (ION) as nanometric base (PND/ION‐NG). This was then added into a solution of PDMA grafted onto NaAlg. Through dropwise addition of mixed aqueous solution of iron salts into the prepared polymeric solution, a novel hydrogel nanocomposite with excellent pH, thermal and magnetic responsivity was fabricated. The synthesized samples were fully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy‐dispersive X‐ray analysis, vibrating sample magnetometry and atomic force microscopy. A mechanism for the formation of PNIPAM‐co‐PDMA/NaAlg‐ION nanogel–PDMA/NaAlg‐ION hydrogel and PND/ION nanogel is suggested. Swelling capacity was measured at various temperatures (25 to 45 °C), pH values (from 2 to 11) and magnetic field and under load (0.3 psi) and the dependence of swelling properties of the nanogel–hydrogel nanocomposite on these factors was well demonstrated. The release rate of doxorubicin hydrochloride (DOX) as an anticancer drug was studied at different pH values and temperatures in the presence and absence of a magnetic field. The results showed that these factors have a high impact on drug release from this nanocomposite. The result showed that DOX release could be sustained for up to 12.5 days from these nanocomposite hydrogels, significantly longer than that achievable using the constituent hydrogel or nanogel alone (<1 day). The results indicated that the nanogel–hydrogel nanocomposite can serve as a novel nanocarrier for anticancer drug delivery. © 2019 Society of Chemical Industry  相似文献   
5.
Clay polyurethane nanocomposite (CPN) coating films were fabricated by uniformly dispersing nanoclay, organically modified with 25–30 wt.% octadecylamine in varying concentrations up to 5 wt.%, in a commercial two component, glossy, acrylic aliphatic polyurethane using ultrasonication. Organo-modified nanoclay was characterized by X-ray diffraction (XRD). The dispersion of the nanoclay into the matrix was investigated by scanning electron microscopy (SEM). CPN coating films were characterized by thermogravimetric analysis (TGA), and flame retardant, corrosion resistance and mechanical properties were also investigated. The XRD measurement indicated that, the organo-modified nanoclay particles were mainly constituted of montmorillonite with traces of quartz and calcite also found to be present. The SEM analysis showed that the nanoclay layers were dispersed and intercalated into the polyurethane coating. Thermogravimetric analysis showed that incorporating 5 wt.% organo-nanoclay into polyurethane considerably enhanced the thermal stability and increased the char residue to 14.11 wt.% relative to 4.58 for the sample without organo-nanoclay (blank polyurethane). The limiting oxygen index (LOI) test revealed that incorporation of organo-nanoclay led to a further increase in LOI values, which indicate an improvement in flame retardancy properties. The corrosion resistance also improved and this improvement increases with increase nanoclay wt.%. The mechanical resistance measurements demonstrated that the gloss of the CPN coating films slightly decreased, although hardness, adhesion and impact resistance of the CPN coating films improved with the incorporation of the organo-nanoclay.  相似文献   
6.
Due to the systematic increase in the production of nanomaterials (NMs) and their applications in many areas of life, issues associated with their toxicity are inevitable. In particular, the performance of heterogeneous NMs, such as nanocomposites (NCs), is unpredictable as they may inherit the properties of their individual components. Therefore, the purpose of this work was to assess the biological activity of newly synthesized Cu/TiO2-NC and the parent nanoparticle substrates Cu-NPs and TiO2-NPs on the bacterial viability, antioxidant potential and fatty acid composition of the reference Escherichia coli and Bacillus subtilis strains. Based on the toxicological parameters, it was found that B. subtilis was more sensitive to NMs than E. coli. Furthermore, Cu/TiO2-NC and Cu-NPs had an opposite effect on both strains, while TiO2-NPs had a comparable mode of action. Simultaneously, the tested strains exhibited varied responses of the antioxidant enzymes after exposure to the NMs, with Cu-NPs having the strongest impact on their activity. The most considerable alternations in the fatty acid profiles were found after the bacteria were exposed to Cu/TiO2-NC and Cu-NPs. Microscopic images indicated distinct interactions of the NMs with the bacterial outer layers, especially in regard to B. subtilis. Cu/TiO2-NC generally proved to have less distinctive antimicrobial properties on B. subtilis than E. coli compared to its parent components. Presumably, the biocidal effects of the tested NMs can be attributed to the induction of oxidative stress, the release of metal ions and specific electrochemical interactions with the bacterial cells.  相似文献   
7.
This article sounds the alarm that a significant build-out of efficient lighting and renewable energy technologies may be endangered by shortages of rare earths and rare earth permanent magnets. At the moment, China is the predominant supplier of both and its recent rare earth industrial policies combined with its own growing demand for rare earths have caused widespread concern. To diversify supplies, new mining—outside of China—is needed. But what many observers of the “rare earth problem” overlook is that China also dominates in (1) the processing of rare earths, particularly the less abundant heavy rare earths, and (2) the supply chains for permanent magnets. Heavy rare earths and permanent magnets are critical for many renewable energy technologies, and it will require decades to develop new non-Chinese deposits, processing capacity, and supply chains. This article clarifies several misconceptions, evaluates frequently proposed solutions, and urges policy makers outside of China to undertake measures to avert a crisis, such as greater support for research and development and for the cultivation of intellectual capital.  相似文献   
8.
The present paper includes experimental and analytical data on the fracture properties of a nickel-iron superalloy, a ferromagnetic austenite, at 4 K in magnetic fields of 0 and 6 T. The tensile, notch tensile and small punch tests are employed. A finite element analysis is also performed to convert the experimentally measured load-displacement data into useful engineering information. To interpret the results we review the available theory of the influence of magnetic field on the stress intensity factor for a crack in ferromagnetic materials.  相似文献   
9.
In the presented work some properties of a recently developed Si3N4/SiC micro/nanocomposite have been investigated. The material was tested using a pin on disc configuration. Under unlubricated sliding conditions using Si3N4 pin at 50 % humidity, the friction coefficient was in the range of 0,6 ‐ 0,7. The reduction of humidity resulted in a lower coefficient of friction, in vacuum the coefficient of friction had a value of about 0,6. The wear resistance in vacuum was significantly lower then that in air. The wear patterns on the Si3N4+SiC disc revealed that mechanical fracture was the wear controlling mechanism. Creep tests were realized in four point bending configuration in the temperature interval 1200‐1400 °C at stresses 50,100 and 150 MPa and the minimal creep deformation rate was established for each stress level. The activation energy, established from the minimal creep deformation had a value of about 360 kJ/mol and the stress exponent values were in the range of 0.8‐1.28. From the achieved stress exponents it can be assumed that under the studied load/temperature conditions the diffusion creep was the most probable creep controlling mechanism.  相似文献   
10.
原位插层聚合制备PVC/蒙脱土纳米复合材料   总被引:15,自引:5,他引:10  
采用氯乙烯单体直接插层到蒙脱土中进行原位插层聚合,制备纳米复合材料,并用小角X射线衍射(XRD)、扫描电子显微镜(SEM)和电子探针技术对复合材料进行了结构表征。实验结果表明:采用原位插层聚合法制得的PVC/蒙脱土(MMT)复合材料为剥离型纳米复合材料。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号