首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  国内免费   37篇
综合类   3篇
化学工业   7篇
建筑科学   24篇
矿业工程   4篇
一般工业技术   4篇
冶金工业   1篇
原子能技术   55篇
自动化技术   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2016年   2篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   10篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1980年   1篇
排序方式: 共有99条查询结果,搜索用时 453 毫秒
1.
实验研究了水辐射分解作用对高放废物深地质处置容器材料的影响。在高放废物深地质处置库附近的地下水,受辐射线作用后分解出氧、氢和氧化产物(例如H_2O_2等),于是在高放废物容器周围形成一个氧化场,导致高放废物中的某些重要放射性核素(例如U,Np和Tc)易溶于水,并向远域迁移。本实验中的含FeSO_4(0.13 mol/L)水溶液在吸收剂量为0、20、60、180、500kGy的射线作用下,其氧化还原电位(Eh)值由+357mV增至+414 mV;在不同吸收剂量的射线作用下,金属Cu、金属Al、0.357 mv金属Fe和不锈钢(后者是我国拟采用的高放废物包装容器材料),在水溶液中的氧化侵蚀强度,分别比在无辐射情况下的大0.2-6.1倍。  相似文献   
2.
高放废物处置库有最高温度限制,影响处置库最高温度的条件包括处置库布局、处置单元参数、缓冲回填材料和围岩的热参数.以KBS-3处置库为例,讨论了废物罐组成、热功率、罐表面材料热容和热导率,给出了缓冲材料膨润土的热导率变化特点,花岗岩的热物理性质及热演化过程的研究结果.根据KBS-3处置库布局,分别总结了数值法和解析法求解处置库温度场的计算结果,以及结果的不确定性,最后介绍了我国高放废物处置库热问题研究的最新成果.  相似文献   
3.
以甘肃北山旧井地段的断裂为研究对象,对其进行了分形特征研究。在对该区的TM遥感影像进行线性构造解译的基础上,利用线性构造分布图,使用Box Flex方法,计算了旧井地段断裂的分维值,结果表明,旧井地段断裂具有分形特征,且分维值为1.466,在工程岩体质量分级中属于“好”的级别。通过此项研究,初步建立了旧井地段断裂分形特征的研究方法,评价了该地段花岗岩的岩体工程质量,为高放废物处置库的选址和场址评价提供了基础资料。  相似文献   
4.
A carbon nanoencapsulate has a polyhedral outer shell of nested, concentric layers of carbon. The shell defines an internal cavity where a metal is encapsulated. Although the rare-earth carbides readily hydrolyze in moist air, the carbides in these carbon shells did not degrade after exposure to air for considerable lengths of time. This means that the carbide particle is physically enclosed within the carbon cavity completely, and the cavity protects it perfectly against attack of water molecules. Considering intrinsic chemical stability of carbon under oxygen free condition, this structure may be a perfect barrier to extremely long-term release of radionuclides. Because encapsulation of LaC2 within carbon nanoparticles increased drastically from by-product to major product, it would be possible to find the optimized condition that complete encapsulation is achieved. Intrinsic stability of carbon and carbon coated waste nanoparticles may provide an improved barrier to radionuclide release by groundwater.  相似文献   
5.
导热性能是高放废物地质处置库缓冲/回填材料的重要性能之一。采用瞬变平面热源法,研究了我国高放废物地质处置首选缓冲/回填材料高庙子膨润土,及以其为主料,添加不同含量石英砂、北山花岗岩碎屑组成的混合材料的导热性能。分析了添加剂种类和含量、干密度、饱和度等因素对导热系数的影响。研究结果表明:高庙子膨润土及其混合材料的导热系数、热扩散系数都随干密度和含水量的增大而增大;石英砂、北山花岗岩碎屑能够不同程度提高膨润土的导热系数,石英砂的作用优于北山花岗岩碎屑;饱和度对添加剂发挥其提高缓冲/回填材料导热性能的作用影响明显,饱和度越高,添加剂的作用越显著。  相似文献   
6.
This study presents the potential of the burning and/or transmutation (B/T) of transuraniums (TRUs), discharged from the pressured water reactor PWR-UO2 spent fuel, in the modified PROMETHEUS-H fusion reactor. Two different design shapes (Models A and B) were considered. The transmutation zone (TZ), which contains the mixture of TRU nuclides (10%), was located in the modified blankets. The volume fraction of Pu in the mixture is raised from 0 to 40% stepped by 10% to determine its effect on the B/T. The fuel spheres were cladded with SiC (5%) and cooled with high-pressured helium gas (85%) for nuclear heat transfer. The calculations were performed for an operation period (OP) of up to 10 years by 75% plant factor (η) under a neutron wall load (P) of 4.7 MW/m2. The results bring out that: (1) the Model B transmutes the TRUs more rapidly than the Model A; (2) the effective half-lives decrease about 20 and 40% with the increase of Pu fraction in the cases of Models A and B, respectively; (3) the M values are quite high with respect to the M value of the original PROMETHEUS fusion reactor; (4) the blankets can produce substantial electricity in situ.  相似文献   
7.
针对有些高放废液含有较多Fe、Cr、Ni过渡金属元素,在玻璃固化工艺过程中易于形成晶体,导致熔融玻璃体的黏度增加、化学稳定性变差以及工艺过程中易出现出料口堵塞等问题,研究了废物包容量为15%和20%、添加ZnO(5.6%)和CaO(1.75%)的配方对形成的4种玻璃固化体的物理性能(密度、硬度、断裂韧性)、化学性能(产品一致性测试和蒸汽腐蚀测试)和结构(X射线衍射析晶分析、拉曼光谱分析)的影响。研究分析显示,提高废物包容量至20%以及添加ZnO和CaO均可促进硼硅酸盐玻璃固化体网络结构的稳定性和化学稳定性,并增强玻璃体的密度,提高硬度;但玻璃固化体的高温黏度升高,断裂韧性下降。  相似文献   
8.
吕涛  李昶  杨球玉  王旭宏  李廷君  张威 《辐射防护》2015,35(2):71-77,103
应用FLAC3D软件建立高放废物地质处置库热学分析的简化计算模型,选择影响处置库温度场的包括材料热学参数、几何参数以及时间参数在内的16个关键参数,以膨润土内表面峰值温度(该物理量是高放废物地质处置库热学设计计算中作为温度准则的物理量)为参数敏感性分析的目标物理量,通过热学计算开展参数敏感性分析。在参数敏感性分析中,将参数敏感程度划分为高、中、低三等。分析表明:4个参数(膨润土导热系数、膨润土厚度、围岩导热系数、高放废物中间贮存时间)为高敏感度参数,2个参数(散热材料厚度、回填材料厚度)为中度敏感性参数,其它10个参数(高放玻璃固化废物体、外包装容器、散热材料、回填材料的导热系数与比热,以及膨润土与围岩的比热)为低敏感度参数。通过分析可以得到如下结论:在设计高放废物地质处置库时,对膨润土及围岩导热系数的测试应力求准确,对测试结果数据认真分析,确保为设计计算提供合理的输入参数;在确保膨润土满足工艺要求功能的前提下,宜尽量减小膨润土的厚度;按照本文热学分析模型初步估算,我国高放废物至少需要中间贮存20 a以上。  相似文献   
9.
In order to dispose of high-level radioactive waste (HLW) safely in geological formations, it is necessary to assess the feasibility, safety, appropriateness, and stability of the disposal concept at an underground research laboratory (URL) constructed in the same geological formation as the host rock. In this study, minimum requirements and the conceptual design for an efficient construction of a small scale URL were derived based on a literature review. To confirm the validity of the conceptual design for construction at KAERI, a geological survey including a seismic refraction survey, electronic resistivity survey, borehole drilling, and in situ and laboratory tests were carried out. The mechanical stability of the URL was investigated with a consideration of the surface topography, tunnel geometry, tunnel slope, sequential excavation, in situ stress ratio, erosion effect, and rock property variation along the tunnel using the three-dimensional code, FLAC3D. From the study, it was possible to conclude that the small scale URL will be effectively constructed in a granite mass at KAERI and will satisfy the minimum requirements.  相似文献   
10.
高放废液合成岩石固化研究   总被引:9,自引:3,他引:6  
张传智  张宝善 《辐射防护》1997,17(6):417-426
建立了高效废液合成岩石固装置,确定了固化工艺和性能测试方法,制备的合成岩石固化体样吕测试样结果表明,采用的实验装置,工艺流程和测试方法可行,将Na0.5REE0.5TiO3型钙钛矿和Na2Al2TiO8O16型黑钛铁钠矿作为包容钠的主要矿相,分别研制了国内生产高放废液的合成岩石基料配方,氧化钠的包容量可达5.7%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号