首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23121篇
  免费   2070篇
  国内免费   1707篇
电工技术   1971篇
综合类   1382篇
化学工业   10092篇
金属工艺   392篇
机械仪表   516篇
建筑科学   1016篇
矿业工程   772篇
能源动力   2549篇
轻工业   458篇
水利工程   693篇
石油天然气   1904篇
武器工业   33篇
无线电   133篇
一般工业技术   934篇
冶金工业   631篇
原子能技术   2932篇
自动化技术   490篇
  2024年   24篇
  2023年   240篇
  2022年   396篇
  2021年   532篇
  2020年   595篇
  2019年   561篇
  2018年   545篇
  2017年   640篇
  2016年   776篇
  2015年   641篇
  2014年   1215篇
  2013年   2034篇
  2012年   1356篇
  2011年   1583篇
  2010年   1285篇
  2009年   1292篇
  2008年   1243篇
  2007年   1381篇
  2006年   1315篇
  2005年   1225篇
  2004年   1099篇
  2003年   1057篇
  2002年   933篇
  2001年   834篇
  2000年   628篇
  1999年   613篇
  1998年   478篇
  1997年   394篇
  1996年   341篇
  1995年   317篇
  1994年   237篇
  1993年   186篇
  1992年   155篇
  1991年   165篇
  1990年   131篇
  1989年   96篇
  1988年   64篇
  1987年   94篇
  1986年   43篇
  1985年   42篇
  1984年   27篇
  1983年   12篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1959年   33篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Hydrogen is currently receiving significant attention as an alternative energy resource, and among the various methods for producing hydrogen, methanol steam reforming (MSR) has attracted great attention because of its economy and practicality. Because the MSR reaction is inherently activated over catalytic materials, studies have focused on the development of noble metal-based catalysts and the improvement of existing catalysts with respect to performance and stability. However, less attention has been paid to the modification and development of innovative MSR reactors to improve their performance and efficiency. Therefore, in this review paper, we summarize the trends in the development of MSR reactor systems, including microreactors and membrane reactors, as well as the various structured catalyst materials appropriate for application in complex reactors. In addition, other engineering approaches to achieve highly efficient MSR reactors for the production of hydrogen are discussed.  相似文献   
2.
The effective and efficient utilization of low-calorific value (LCV) gases has gained increasing attention in scientific research and industrial fields. In this study, the combustion characteristics of three LCV gases in practical devices are analyzed by using a nonadiabatic perfectly stirred reactor model. The complete steady-state solution in the temperature-residence time parameter space is obtained with arc-length continuation. The stable operation region is quantified by the eigenvalue analysis. The transition of solution curves is quantified with heat loss coefficient. Five key system parameters are systematically investigated on their effects on stability limits. With the combustion performance being quantified by a combustion state index, a combustion state regulation method is proposed to find the optimal regulation path of system parameters. Active subspace method is further applied to shorten the regulation step by identifying the active direction. The proposed method and findings are useful for optimal regulation of burning LCV gases in industrial burners.  相似文献   
3.
ABSTRACT

It is important to perform neutron transport simulations with accurate nuclear data in the neutronics design of a fusion reactor. However, absolute values of large-angle scattering cross sections vary among nuclear data libraries even for well-examined nuclide of iron. Benchmark experiments focusing on large-angle scattering cross sections were thus performed to confirm the correctness of nuclear data libraries. The series benchmark experiments were performed at a DT neutron source facility, OKTAVIAN of Osaka University, Japan, by the unique experimental system established by the authors’ group, which can extract only the contribution of large-angle scattering reactions. This system consists of two shadow bars, target plate (iron), and neutron detector (niobium). Two types of shadow bars were used and four irradiations were conducted for one experiment, so that contribution of room-return neutrons was effectively removed and only large-angle scattering neutrons were extracted from the measured four Nb reaction rates. The obtained experimental results were compared with calculations for five nuclear data libraries including JENDL-4.0, JEFF.-3.3, FENDL-3.1, ENDF/B- VII, and recently released ENDF/B-VIII. It was found from the comparison that ENDF/B-VIII showed the best result, though ENDF/B-VII showed overestimation and others are in large underestimation at 14 MeV.  相似文献   
4.
Increasing the reaction temperature of the living cationic polymerization of isobutylene is crucial for industrial production due to the cost of refrigeration. The reaction temperature increase was achieved with an accelerated reaction rate using a flow reaction system. The polymerization conditions, including the flow reactor design, were based on the results of kinetic studies. Utilizing a milli‐scale flow reactor, polyisobutylene, which has a narrow molecular weight distribution, was obtained within a considerably short residence time at a high temperature. Furthermore, it was confirmed that the value of Mw/Mn correlates with the product of the Reynolds number and the angle of collision.  相似文献   
5.
In this study, a multi-tubular thermally coupled packed bed reactor in which simultaneous production of ammonia and methyl ethyl ketone (MEK) takes place is simulated. The simulation results are presented in two co-current and counter-current flow modes. Based on this new configuration, the released heat from the ammonia synthesis reaction as an extremely exothermic reaction in the inner tube is employed to supply the required heat for the endothermic 2-butanol dehydrogenation reaction in the outer tube. On the other hand, MEK and hydrogen are produced by the dehydrogenation reaction of 2-butanol in the endothermic side, and the produced hydrogen is used to supply a part of the ammonia synthesis feed in the exothermic side. Thus, 30.72% and 31.88% of the required hydrogen for the ammonia synthesis are provided by the dehydrogenation reaction in the co-current and counter-current configurations, respectively. Also, according to the thermal coupling, the required cooler and furnace for the ammonia synthesis and 2-butanol dehydrogenation conventional plants are eliminated, respectively. As a result, operational costs, energy consumption and furnace emissions are considerably decreased. Finally, a sensitivity analysis and optimization are applied to study the effect of the main process parameters variation on the system performance and obtain the minimum hydrogen make-up flow rate, respectively.  相似文献   
6.
A 2D computational fluid dynamics (Eulerian–Eulerian) multiphase flow model coupled with a population balance model (CFD-PBM) was implemented to investigate the fluidization structure in terms of entrance region in an industrial-scale gas phase fluidized bed reactor. The simulation results were compared with the industrial data, and good agreement was observed. Two cases including perforated distributor and complete sparger were applied to examine the flow structure through the bed. The parametric sensitivity analysis of time step, number of node, drag coefficient, and specularity coefficient was carried out. It was found that the results were more sensitive to the drag model. The results showed that the entrance configuration has significant effect on the flow structure. While the dead zones are created in both corners of the distributors, the perforated distributor generates more startup bubbles, heterogeneous flow field, and better gas–solid interaction above the entrance region due to jet formation.  相似文献   
7.
《Advanced Powder Technology》2020,31(12):4598-4618
Simulation based on discrete element method (DEM) coupled with computational fluid dynamics (CFD), coupled DEM-CFD, is a powerful tool for investigating the details of dense particle–fluid interaction problems such as in fluidized beds and pneumatic conveyers. The addition of a mechanical vibration to a system can drastically alter the particle and fluid flows; however, their detailed mechanisms are not well understood. In this study, a DEM-CFD model based on a non-inertial frame of reference is developed to achieve a better understanding of the influence of vibration in a vibrated fluidized bed. Because the high computational cost of DEM-CFD calculations is still a major problem, an upscaled coarse-graining model is also employed. To realize similar behaviors with enlarged model particles, non-dimensional parameters at the particle scale were deduced from the governing equations. The suitability and limitations of the proposed model were examined for a density segregation problem of a binary system. To reduce the computational costs, we show that the ratio between the bed width and model particle size can be reduced to a minimum value of 100; to obtain similar segregation behaviors, the ratio between the bed height and model particle size is considered unchanged.  相似文献   
8.
Combination of X-ray Digital Industrial Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques for local liquid velocity measurement (VLL) has been newly developed and successfully applied for trickle bed reactor (TBR). The technique was validated against newly developed fiber optical probe technique. This work attempts to highlight the applicability of this newly developed technique on a liquid–solid packed bed reactor. In this work, liquid was represented by water and solids were represented by EPS beads. The EPS beads were chosen because of its low density property. Three superficial liquid velocities (VSL) were applied to the system. The experiment was replicated four times. The digital industrial radiography (DIR) consists of a complementary metal oxide semiconductor (CMOS) digital detector and X-ray source. Results of this work suggest that the technique has been successfully applied and comparable with previous work that has been done in the literature. It also suggests that there will be a maximum measurable interstitial liquid velocity when it travel inside the packed bed. The measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. For VSL=0.42±±2%, the VLL-Max is in between 1.7 cm/s and 1.9 cm/s, VSL=0.84±±2%, the VLL-Max is in between 3.6 cm/s and 4.0 cm/s, and for VSL=1.11±±2%, the VLL-Max is in between 4.3 cm/s and 4.8 cm/s.  相似文献   
9.
In this work a multicommuted flow system employing copper–4,4′- dipyridyl coordination compound as the solid-phase reagent for the spectrophotometric determination of reducing sugar was developed. The coordination compound was synthesized through a reaction of the 4,4′-dipyridyl and copper (II) nitrate, under hydrothermal conditions. The complex was characterized by infrared spectroscopy (FTIR), power X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and thermogravimetric analysis (TGA). Based on the characterization, a multicommuted spectrophotometric procedure for the determination of reducing sugar using copper (II) complex as solid reagent is proposed. The proposed method was based on the redox reaction between a monosaccharide, such as fructose and glucose (reducing sugar) and Cu(II). This reaction, mediated in an alkaline medium, produces a yellow compound that can be determined by absorption electronic spectroscopy (λABS = 420 nm). Under optimum experimental conditions, a linear response ranging from 1.0 to 20.0 g L−1 (R = 0.9978 and n = 5), a detection (3σ criterion) and quantification (10σ criterion) limit estimated at 0.23 and 0.75 g L−1, respectively, a standard deviation relative of 4.7% (n = 7), for a reference solution of 10.0 g L−1 reducing sugar, and a sampling rate of 75 determinations per hour were achieved. The proposed system was applied to the determination of reducing sugars in coconut water and juices. The analysis of ten samples and the application of the t-test to the results found, and those obtained using reference procedures (AOAC), provided no significant differences at a 95% confidence level. This system enabled the analysis of reducing sugar with ease and simplicity, providing a significant economy of the solid reagent (600 μg per determination) and reducing effluent generation.  相似文献   
10.
Water electrolysis is a process that can produce hydrogen in a clean way when renewable energy sources are used. This allows managing large renewable surpluses and transferring this energy to other sectors, such as industry or transport. Among the electrolytic technologies to produce hydrogen, proton exchange membrane (PEM) electrolysis is a promising alternative. One of the main components of PEM electrolysis cells are the bipolar plates, which are machined with a series of flow distribution channels, largely responsible for their performance and durability. In this work, AISI 316L stainless steel bipolar plates have been built by additive manufacturing (AM), using laser powder bed fusion (PBF-L) technology. These bipolar plates were subjected to ex-situ corrosion tests and assembled in an electrolysis cell to evaluate the polarization curve. Furthermore, the obtained results were compared with bipolar plates manufactured by conventional machining processes (MEC). The obtained experimental results are very similar for both manufacturing methods. This demonstrates the viability of the PBF-L technology to produce metal bipolar plates for PEM electrolyzers and opens the possibilities to design new and more complex flow distribution channels and to test these designs in initial phases before scaling them to larger surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号