首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26393篇
  免费   2873篇
  国内免费   1513篇
电工技术   4158篇
综合类   2162篇
化学工业   3242篇
金属工艺   516篇
机械仪表   1348篇
建筑科学   1322篇
矿业工程   383篇
能源动力   889篇
轻工业   1519篇
水利工程   378篇
石油天然气   632篇
武器工业   228篇
无线电   2431篇
一般工业技术   2700篇
冶金工业   2088篇
原子能技术   177篇
自动化技术   6606篇
  2024年   104篇
  2023年   459篇
  2022年   585篇
  2021年   802篇
  2020年   853篇
  2019年   734篇
  2018年   707篇
  2017年   892篇
  2016年   939篇
  2015年   1071篇
  2014年   1339篇
  2013年   1757篇
  2012年   1515篇
  2011年   1941篇
  2010年   1441篇
  2009年   1580篇
  2008年   1560篇
  2007年   1850篇
  2006年   1630篇
  2005年   1386篇
  2004年   1159篇
  2003年   1030篇
  2002年   851篇
  2001年   708篇
  2000年   584篇
  1999年   527篇
  1998年   562篇
  1997年   354篇
  1996年   289篇
  1995年   214篇
  1994年   206篇
  1993年   165篇
  1992年   166篇
  1991年   129篇
  1990年   125篇
  1989年   65篇
  1988年   63篇
  1987年   56篇
  1986年   62篇
  1985年   83篇
  1984年   51篇
  1983年   53篇
  1982年   38篇
  1981年   16篇
  1980年   22篇
  1979年   12篇
  1978年   10篇
  1977年   8篇
  1976年   4篇
  1974年   4篇
排序方式: 共有10000条查询结果,搜索用时 33 毫秒
1.
A key element in solving real-life data science problems is selecting the types of models to use. Tree ensemble models (such as XGBoost) are usually recommended for classification and regression problems with tabular data. However, several deep learning models for tabular data have recently been proposed, claiming to outperform XGBoost for some use cases. This paper explores whether these deep models should be a recommended option for tabular data by rigorously comparing the new deep models to XGBoost on various datasets. In addition to systematically comparing their performance, we consider the tuning and computation they require. Our study shows that XGBoost outperforms these deep models across the datasets, including the datasets used in the papers that proposed the deep models. We also demonstrate that XGBoost requires much less tuning. On the positive side, we show that an ensemble of deep models and XGBoost performs better on these datasets than XGBoost alone.  相似文献   
2.
In this study, the anti-atherosclerotic properties of three marine phospholipids (MPLs) extracts from fishery by-products including codfish roe, squid gonad, and shrimp head are verified. Their effects on key factors involved in atherosclerosis are examined and compared to explore whether the differences in their constitutions lead to the differences in the function. All three MPLs dampen oxidation of low- density lipoproteins (LDL) in vitro. Treating RAW264.7 macrophages and HUVECs endothelial cells with each MPLs ranging 10–100 µg mL−1 does not decrease cell viability, yet ox-LDL caused cytotoxicity of both cells are alleviated by 50 or 100 µg mL−1 MPLs treatment. In addition, the three MPLs reduce ox-LDL induced macrophage foam-like transition, mainly through inhibition of lipid uptake. Of the three MPLs, the one from squid gonad exhibits the best effect. On the other hand, all three MPLs modulate inflammatory responses, equally, by inhibiting the adhesion of monocytes to endothelial cells, and decreasing secretion of pro-inflammatory cytokines IL-6 and MCP-1. Using a high-cholesterol diet induced zebrafish model, it is found that all three MPLs, especially the one from squid gonad, alleviates cholesterol accumulation in early plaques, and decreases total cholesterol as well as lipid peroxide in vivo. Practical Applications: As a way of making the best of the increasingly scarce marine resources, valuable lipid components can be recovered from by-products and wastes from the fishery industry. Here, we tested the anti-atherosclerotic effects and the mechanisms of three MPLs extracted from codfish roe, squid gonad, and shrimp head. Our study provides further evidence that marine phospholipids extracted from fishery by-products could protect against atherosclerosis, and helps to elucidate the structure-function relationship of MPLs.  相似文献   
3.
The existing analytical average bit error rate (ABER) expression of conventional generalised spatial modulation (CGSM) does not agree well with the Monte Carlo simulation results in the low signal‐to‐noise ratio (SNR) region. Hence, the first contribution of this paper is to derive a new and easy way to evaluate analytical ABER expression that improves the validation of the simulation results at low SNRs. Secondly, a novel system termed CGSM with enhanced spectral efficiency (CGSM‐ESE) is presented. This system is realised by applying a rotation angle to one of the two active transmit antennas. As a result, the overall spectral efficiency is increased by 1 bit/s/Hz when compared with the equivalent CGSM system. In order to validate the simulation results of CGSM‐ESE, the third contribution is to derive an analytical ABER expression. Finally, to improve the ABER performance of CGSM‐ESE, three link adaptation algorithms are developed. By assuming full knowledge of the channel at the receiver, the proposed algorithms select a subset of channel gain vector (CGV) pairs based on the Euclidean distance between all CGV pairs, CGV splitting, CGV amplitudes, or a combination of these.  相似文献   
4.
This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development.  相似文献   
5.
In the last few years, more and more complex microsphere models have been proposed to predict the mechanical response of various polymers. Similarly than for microplane models, they consist in deriving a one-dimensional force vs. stretch equation and to integrate it over the unit sphere to obtain a three-dimensional constitutive equation. In this context, the focus of authors is laid on the physics of the one-dimensional relationship, but in most of the case the influence of the integration method on the prediction is not investigated.Here we compare three numerical integration schemes: a classical Gaussian scheme, a method based on a regular geometric meshing of the sphere, and an approach based on spherical harmonics. Depending on the method, the number of integration points may vary from 4 to 983,040! Considering simple quantities, i.e. principal (large) strain invariants, it is shown that the integration method must be carefully chosen. Depending on the quantities retained to described the one-dimensional equation and the required error, the performances of the three methods are discussed. Consequences on stress–strain prediction are illustrated with a directional version of the classical Mooney–Rivlin hyperelastic model. Finally, the paper closes with some advices for the development of new microsphere constitutive equations.  相似文献   
6.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
7.
Vertical arrays of nanostructures (NSs) are emerging as promising platforms for probing and manipulating live mammalian cells. The broad range of applications requires different types of interfaces, but cell settling on NS arrays is not yet fully controlled and understood. Cells are both seen to deform completely into NS arrays and to stay suspended like tiny fakirs, which have hitherto been explained with differences in NS spacing or density. Here, a better understanding of this phenomenon is provided by using a model that takes into account the extreme membrane deformation needed for a cell to settle into a NS array. It is shown that, in addition to the NS density, cell settling depends strongly on the dimensions of the single NS, and that the settling can be predicted for a given NS array geometry. The predictive power of the model is confirmed by experiments and good agreement with cases from the literature. Furthermore, the influence of cell‐related parameters is evaluated theoretically and a generic method of tuning cell settling through surface coating is demonstrated experimentally. These findings allow a more rational design of NS arrays for the numerous exciting biological applications where the mode of cell settling is crucial.  相似文献   
8.
ARIMA is seldom used in supply chains in practice. There are several reasons, not the least of which is the small sample size of available data, which restricts the usage of the model. Keeping in mind this restriction, we discuss in this paper a state-space ARIMA model with a single source of error and show how it can be efficiently used in the supply-chain context, especially in cases when only two seasonal cycles of data are available. We propose a new order selection algorithm for the model and compare its performance with the conventional ARIMA on real data. We show that the proposed model performs well in terms of both accuracy and computational time in comparison with other ARIMA implementations, which makes it efficient in the supply-chain context.  相似文献   
9.
This paper is prepared in honour of Professor E.T. Brown for his outstanding contributions to rock mechanics and geotechnical engineering and also for his personal influence on the first author's research career in geomechanics and geotechnical engineering. As a result, we have picked a topic that reflects two key research areas in which Professor E.T. Brown has made seminal contributions over a long and distinguished career. These two areas are concerned with the application of the critical state concept to modelling geomaterials and the analysis of underground excavation or tunnelling in geomaterials.Partially due to Professor Brown's influence, the first author has also been conducting research in these two areas over many years. In particular, this paper aims to describe briefly the development of a unified critical state model for geomaterials together with an application to cavity contraction problems and tunnelling in soils.  相似文献   
10.
The principles and design of “active” self‐propelling particles that can convert energy, move directionally on their own, and perform a certain function is an emerging multidisciplinary research field, with high potential for future technologies. A simple and effective technique is presented for on‐demand steering of self‐propelling microdiodes that move electroosmotically on water surface, while supplied with energy by an external alternating (AC) field. It is demonstrated how one can control remotely the direction of diode locomotion by electronically modifying the applied AC signal. The swimming diodes change their direction of motion when a wave asymmetry (equivalent to a DC offset) is introduced into the signal. The data analysis shows that the ability to control and reverse the direction of motion is a result of the electrostatic torque between the asymmetrically polarized diodes and the ionic charges redistributed in the vessel. This novel principle of electrical signal‐coded steering of active functional devices, such as diodes and microcircuits, can find applications in motile sensors, MEMs, and microrobotics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号