首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16728篇
  免费   1690篇
  国内免费   864篇
电工技术   3136篇
技术理论   1篇
综合类   1393篇
化学工业   2092篇
金属工艺   1102篇
机械仪表   1030篇
建筑科学   1208篇
矿业工程   594篇
能源动力   446篇
轻工业   868篇
水利工程   232篇
石油天然气   401篇
武器工业   188篇
无线电   1841篇
一般工业技术   1771篇
冶金工业   1227篇
原子能技术   109篇
自动化技术   1643篇
  2024年   61篇
  2023年   236篇
  2022年   407篇
  2021年   553篇
  2020年   523篇
  2019年   397篇
  2018年   386篇
  2017年   543篇
  2016年   535篇
  2015年   689篇
  2014年   1264篇
  2013年   1014篇
  2012年   1326篇
  2011年   1347篇
  2010年   1006篇
  2009年   1013篇
  2008年   942篇
  2007年   1176篇
  2006年   1020篇
  2005年   837篇
  2004年   690篇
  2003年   570篇
  2002年   508篇
  2001年   473篇
  2000年   325篇
  1999年   273篇
  1998年   190篇
  1997年   143篇
  1996年   123篇
  1995年   114篇
  1994年   99篇
  1993年   65篇
  1992年   60篇
  1991年   48篇
  1990年   88篇
  1989年   48篇
  1988年   27篇
  1987年   24篇
  1986年   21篇
  1985年   19篇
  1984年   20篇
  1983年   7篇
  1982年   16篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1976年   4篇
  1974年   5篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
2.
In the context of the high-level radioactive waste disposal CIGEO, the corrosion rate due to microbially influenced corrosion (MIC) has to be evaluated. In France, it is envisaged to dispose of high- and intermediate-level long-lived radioactive waste at a depth of 500 m in a deep geological disposal, drilled in the Callovo-Oxfordian claystone (Cox) formation. To do so, a carbon steel casing will be inserted inside disposal cells, which are horizontal tunnels drilled in the Cox. A specific cement grout will be injected between the carbon steel casing and the claystone. A study was conducted to evaluate the possibility of MIC on carbon steel in the foreseeable high radioactive waste disposal. The corrosiveness of various environments was investigated at 50°C and 80°C with or without microorganisms enriched from samples of Andra's underground research laboratory. The monitoring of corrosion during the experiments was ensured using gravimetric method and real-time corrosion monitoring using sensors based on the measurements of the electrical resistance. The corrosion data were completed with microbiological analyses including cultural and molecular characterizations.  相似文献   
3.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
4.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
5.
Cable‐shaped supercapacitors (SCs) have recently aroused significant attention due to their attractive properties such as small size, lightweight, and bendability. Current cable‐shaped SCs have symmetric device configuration. However, if an asymmetric design is used in cable‐shaped supercapacitors, they would become more attractive due to broader cell operation voltages, which results in higher energy densities. Here, a novel coil‐type asymmetric supercapacitor electrical cable (CASEC) is reported with enhanced cell operation voltage and extraordinary mechanical‐electrochemical stability. The CASECs show excellent charge–discharge profiles, extraordinary rate capability (95.4%), high energy density (0.85 mWh cm−3), remarkable flexibility and bendability, and superior bending cycle stability (≈93.0% after 4000 cycles at different bending states). In addition, the CASECs not only exhibit the capability to store energy but also to transmit electricity simultaneously and independently. The integrated electrical conduction and storage capability of CASECS offer many potential applications in solar energy storage and electronic gadgets.  相似文献   
6.
As a solid state joining process, ultrasonic spot welding has been proven to be a promising technique for joining copper alloys. However, challenges still remain in employing ultrasonic spot welding to join copper alloys. This article comprehensively reviews the current state of ultrasonic spot welding of copper alloys with a number of critical issues including materials flow, plastic deformation, temperature distribution, vibration, relative motion, vertical displacement, interface friction coefficient, online monitoring technique, coupled with the macrostructure and microstructure, the mechanical properties and electrical conductivity. In addition, the future trends in this field are provided.  相似文献   
7.
对福建省生产领域近五年的纸巾纸进行随机抽样和质量分析,检测了产品的可迁移性荧光物质指标。结果显示:纸巾纸产品的可迁移性荧光物质指标共出现5批次不合格产品,产品合格率为98.7%,呈现较高的质量水平;纸巾纸的荧光物质检出率近五年呈现先上升后下降的趋势,2015年出现检出率峰值,其值为15.0%,2018年降为0%。按地域统计,福州地区出现3批次可迁移性荧光物质的纸巾纸产品,产品合格率为95.2%;其余地市的产品合格率均为100%。同时,福州纸巾纸产品荧光物质检出率最高,检出率达到12.7%。按产品质量等级统计,纸巾纸优等品的产品质量总体高于合格品的。  相似文献   
8.
Core–shell structures have been proposed to improve the electrical properties of negative-temperature coefficient (NTC) thermistor ceramics. In this work, Al2O3-modified Co1.5Mn1.2Ni0.3O4 NTC thermistor ceramics with adjustable electrical properties were prepared through citrate-chelation followed by conventional sintering. Co1.5Mn1.2Ni0.3O4 powder was coated with a thin Al2O3 shell layer to form a core–shell structure. Resistivity (ρ) increased rapidly with increasing thickness of the Al2O3 layer, and the thermal constant (B) varied moderately between 3706 and 3846 K. In particular, Co1.5Mn1.2Ni0.3O4@Al2O3 ceramic with 0.08 wt% Al2O3 showed the increase of ρ double, and the change in its B was less than 140 K. The Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics showed high stability, and their grain size was relatively uniform due to the protection offered by the shell. The aging coefficient of the ceramic was less than 0.2% after aging for 500 hours at 125°C. Taken together, the results indicate that as-prepared Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics with a core–shell structure may be promising candidates for application as wide-temperature NTC thermistor ceramics.  相似文献   
9.
An alternative Equivalent Electrical Circuit for Proton Exchange Membrane Fuel Cells is modelled in this study. Both I–V characteristics and H2 consumptions corresponding to generated power under load and no-load conditions are investigated. For this purpose, H2 consumptions and I–V characteristics of three different sized PEMFCs are tested. There is a very good harmony between the model results and measured values (relative error %0.7, %6.4 and %2.5 for FC-A, FC-B and FC-C respectively). In the proposed model current passes only on parallel resistance and not on serial resistance at no-load condition. Thus, a FC with higher parallel resistance should be preferred. Another key output of this study is that based on the proposed model, performance comparison of FCs can be performed with the parameters defined in this work. Proposals made in this study can easily be used for performance analysis of FCs under for both steady state and transient analysis.  相似文献   
10.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号