首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   101篇
  国内免费   61篇
电工技术   14篇
综合类   44篇
化学工业   12篇
金属工艺   4篇
机械仪表   4篇
建筑科学   56篇
矿业工程   5篇
能源动力   3篇
轻工业   3篇
水利工程   1篇
石油天然气   1篇
武器工业   2篇
无线电   150篇
一般工业技术   30篇
原子能技术   7篇
自动化技术   320篇
  2024年   1篇
  2023年   5篇
  2022年   6篇
  2021年   18篇
  2020年   21篇
  2019年   24篇
  2018年   22篇
  2017年   18篇
  2016年   18篇
  2015年   21篇
  2014年   33篇
  2013年   31篇
  2012年   45篇
  2011年   56篇
  2010年   42篇
  2009年   43篇
  2008年   56篇
  2007年   77篇
  2006年   43篇
  2005年   26篇
  2004年   18篇
  2003年   22篇
  2002年   6篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有656条查询结果,搜索用时 296 毫秒
1.
高强不锈钢绞线网与ECC的黏结是二者协同工作的基础,且黏结 滑移关系模型是其黏结性能的综合反映,故通过对17组51个高强不锈钢绞网增强ECC薄板试件进行单边拉拔试验,研究横向钢绞线间距、纵向钢绞线直径和相对锚固长度等因素对钢绞线网在ECC中黏结性能的影响规律。试验结果表明,横向钢绞线的设置可使黏结破坏由脆性破坏转变为延性破坏;高强不锈钢绞线网与ECC的黏结滑移曲线可分为5个阶段,分别为上升段、微降段、延性强化段、下降段和残余段。基于试验结果,对钢绞线网在ECC中的黏结破坏特征和黏结 滑移机理进行分析,在相关黏结-滑移关系模型的基础上,提出钢绞线网与ECC的黏结 滑移关系模型,并进行模型参数分析。所提模型及模型参数计算公式与试验结果吻合良好,能较好地反映钢绞线网与ECC的界面黏结滑移特征。  相似文献   
2.
Engineered cementitious composite (ECC) is a strain hardening cementitious composite with extreme tensile ductility of several percent. Few emerging applications of ECC, including lightweight building façade and pavement, make self-cleaning a desirable functionality to be added into the material. This study aims to impart photocatalytic properties into ECC for engaging self-cleaning. Influence of TiO2 content on mechanical properties, cleaning efficiency, surface wettability, and dirt pick-up resistance of white ECC was studied. It shows that the inclusion of TiO2 in ECC engages photocatalysis, facilitates the decomposition of RhB, and enhances photo-induced hydrophilicity significantly. As a result, TiO2-ECC possesses self-cleaning with higher dirt pick-up resistance than normal ECC. However, TiO2 photocatalysis may adversely affect the flexural strength and ductility of ECC due to weakened fiber/matrix interface bond after UV/sunlight irradiation.  相似文献   
3.
水泥基材料抗拉强度低、韧性差是其易于开裂、导致结构耐久性低劣的主要原因之一。高模量聚乙烯醇(PVA)纤维可增强水泥基材料韧性,使其呈现准应变硬化和多缝开裂特征,从而改善结构耐久性。本文通过四点弯曲试验得出了不同加载速率和不同配比应变硬化水泥基复合材料(PVA-SHCC)的力-变形曲线并用CONSOFT软件计算断裂能。结果表明,硅灰使材料的抗压强度有所提高,但最大抗弯承载力和变形下降,断裂能随之降低;甲基纤维素使PVA-SHCC脆性增大;随着加载速率的降低,材料表现出更好的应变硬化性能,微裂缝条数增多。  相似文献   
4.
对风电功率历史数据进行关联信息挖掘,将有助于提高短期风电功率预测的准确度和计算效率。为解决风电功率预测模型的输入、输出变量的相关性冗余问题,尝试采用了一种基于信息熵和互信息的熵相关系数指标,旨在量化评估不同历史日风电样本与待预测日参考样本间的复杂非线性映射关系,并与线性相关系数、秩相关系数、欧氏距离指标进行了对比研究。同时,设计了一种BP神经网络改进模型,通过亲密样本筛选、隐含层结构寻优、网络权重赋初值等环节,克服了传统预测模型的训练数据冗余度大、收敛速度慢问题,提高了预测模型的泛化能力和计算效率。对某风电场实测数据的算例分析表明,所提出的方法在改善短期风电功率预测性能方面具有应用可行性。  相似文献   
5.
采用有限元软件ANSYS,对钢骨-钢管C60混凝土梁柱节点和圆钢管-钢骨水泥聚丙烯纤维(简称PP ECC)节点进行三维非线性有限元分析。分析结果表明,由于PP ECC的作用,普通圆钢管-钢骨混凝土梁柱节点的极限承载力远小于圆钢管-钢骨PP ECC梁柱节点的极限承载力,充分体现了PP ECC良好的刚度及承载力。同时也表明,PP ECC比普通混凝土能更好地同钢管、钢骨协同工作,更能充分发挥钢管、钢骨的受力性能。  相似文献   
6.
采用1.0%,1.5%和2.0%预加拉伸应变,使养护7,28d龄期的高延性纤维增强水泥基复合材料(ECC)试件产生裂缝,研究其在经历10,20和30次硫酸盐-干湿循环后的裂缝特性、自愈合后的拉伸性能及自愈合产物.结果表明:带裂缝试件在经历不同循环次数后均表现出了良好的自愈合效果,残余裂缝的最大宽度和数量明显减少;养护7d试件经历10次循环后的残余裂缝最大宽度由愈合前的80μm降至25μm,养护28d试件经历30次循环后的残余裂缝最大宽度由愈合前的100μm降至50μm;67%以上带裂缝试件自愈合后的单轴拉伸应变能力接近甚至超过同样经历的对比用无裂缝空白试件;养护7d试件自愈合后的最终应力可分别恢复至75%以上,养护28d试件可恢复至131%以上;层状结构的CaCO_3晶体是ECC试件的主要自愈合产物.  相似文献   
7.
8.
ABSTRACT

The fast exponentiation is a crucial one in any kind of public key cryptosystem. Lim-Lee proposed a method for an efficient exponentiation in elliptic curve by dividing n-bit scalar into equal length of simple scalars. In this paper, the general Lim-Lee method is further improved by using the signed binary window method and direct doublings.  相似文献   
9.
标量乘运算从整体上决定了椭圆曲线密码体制的快速实现效率,在一些椭圆曲线公钥密码体制中需要计算多标量乘。多基数链的标量表示长度更短、非零比特数目更少,较好地适用于椭圆曲线标量乘的快速计算。为了提高椭圆曲线密码的效率,在已有的二进制域和素域的标量乘算法的基础上,结合滑动窗口技术、多基算法,提出新的更高效的多标量乘算法。实验结果表明,新算法与传统Shamir算法和交错NAF算法相比,其所需的运算量更少,能有效地提高椭圆曲线多标量乘算法的效率,使多标量乘的运算更高效。相比于其他算法,新算法的计算效率比已有的多标量乘算法提高了约7.9%~20.6%。  相似文献   
10.
一种双矩阵组合公钥算法   总被引:4,自引:0,他引:4       下载免费PDF全文
组合公钥算法中存在选择共谋攻击、随机共谋攻击和线性分析共谋攻击.本算法中用户的私钥是基本私钥与辅助私钥的逆元模乘的结果,基本私钥与辅助私钥分别由基本私钥矩阵和辅助私钥矩阵中的元素组合生成,用户的私钥间不存在线性关系.经过分析,本算法可以抵抗组合公钥算法中存在的选择共谋攻击和随机共谋攻击,并且辅助密钥矩阵的大小可以根据需...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号