首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  国内免费   1篇
  完全免费   4篇
  电工技术   41篇
  2020年   1篇
  2017年   5篇
  2016年   2篇
  2015年   1篇
  2014年   8篇
  2013年   5篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   9篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
1.
基于气象负荷因子的Elman神经网络短期负荷预测   总被引:17,自引:0,他引:17  
针对地区电网负荷易受气候影响的特点,引入气象负荷因子,提出了一种综合考虑各项气象因素.采用Elman反馈神经网络的短期负荷预测模型。由于Elman神经网络具有动态递归性能.可增强负荷预测模型的适应性。经上海电网实际数据的预测仿真计算,证明此方法与传统神经网络预测模型相比.既能减少输入变量个数,又能有效地提高预测精度。  相似文献
2.
基于人工神经网络的综合负荷模型   总被引:6,自引:4,他引:2  
指出了BP神经网络应用于动态综合负荷建模时存在的缺陷。提出了一种适合描述综合负荷动态特性的具有内反馈功能的动态Elman神经网络负荷模型,并采用改进遗传算法作为优化算法对某220 kV变电站综合负荷采集样本进行建模。大量建模实践表明,文章所提出的动态Elman神经网络综合负荷模型具有结构简单、参数少、应用简便、对综合负荷动态特性描述能力强等优点;Elman神经网络不仅对动态负荷建模具有良好的实用价值,也是一种很适合于电力系统其他动态非线性辨识的神经网络模型结构。  相似文献
3.
基于ELMAN神经网络的同步电机动态参数在线辨识   总被引:5,自引:0,他引:5  
为提高同步电机参数在线辨识的速度和可靠性,减少辨识计算量,提出了一种基于神经网络的电机参数动态跟踪辨识方法。针对同步电机暂态、次暂态参数的非线性和动态特性,在多层前向BP网络中引入特殊关联层,形成有“记忆”能力的Elman神经网络,因而可以映射系统的非线性和动态特性。在网络训练算法中,提出一种自适应修正步长和矩量因子的算法,显著提高了训练的收敛速度。训练样本集以同步电机在各种典型运行模式下的检测数据经卡尔曼滤波、状态空间有限元等基于模型的辨识算法离线计算得到。文中还给出了由工控机、智能数据采集卡和传感器锁相环控制接口电路构成的在线辨识硬件电路设计。数字仿真和动模实验机组辨识算例证明,这种Elman神经网络模型能够实现同步电机动态参数的在线跟踪辨识。  相似文献
4.
基于蚁群聚类-Elman神经网络模型的短期电力负荷预测   总被引:4,自引:0,他引:4  
在神经网络负荷预测实际应用中,突出的问题是训练样本大、训练时间长、收敛速度慢。针对负荷预测样本代表性问题,建立了基于蚁群聚类的Elman神经网络预测模型。对负荷历史数据进行蚁群聚类预处理,将聚类后的数据作为神经网络的训练样本。其目的是使输入样本具有代表性,改善网络训练时间和收敛速度,有效提高预测精度。通过某发电厂负荷数据的验证,该模型的预测结果精度较好。  相似文献
5.
气液两相流的流型对其流动和传热特性有很大的影响,所以如何确定流型一直是两相流研究中的重要课题。但是,由于两相流介质之间存在着随机多变的相界面,致使两相流的流型不仅是多种多样,而且其变化也带有随机性,这给流型识别带来了很大困难。而希尔伯特-黄变换(HHT)和神经网络在气液两相流流型识别中还很少见,文中提出了希尔伯特-黄变换与Elman神经网络相结合的气液两相流流型识别的新方法。将压差波动信号经验模态分解(EMD)后的固有模态函数(IMF)进行分析,提取IMF能量特征作为Elman神经网络的输入特征向量,对水平管内的气液两相流流型进行识别。实验结果表明:该方法能很好地识别水平管内的4种流型,为流型识别开辟了一条新的途径;另外,该方法优于BP网络且稳定、识别率高,具有可行性。  相似文献
6.
刘建华  李天玉  付娟娟  吴楠 《继电器》2014,42(5):110-115
针对传统故障录波启动判据算法的局限性,提出一种基于BP神经网络和Elman神经网络的算法。以A、B两相电流越限为例进行了算法的研究,通过选取启动判据样本来训练BP和Elman神经网络,将启动判据信息输入到训练好的两种模型中,由输出结果就可以判断是否需要启动录波。Matlab输出表明:基于BP神经网络的故障录波启动判据算法能有效地完成录波启动,误差较小,但是速度相对较慢;而基于Elman神经网络的故障录波启动判据算法也可以完成录波启动,但是误差稍大,由于带有反馈环节,所以速度较平稳,易于工程实现。较之两种算法,可针对故障录波数据量的大小进行择优选择。  相似文献
7.
应用 PSO 算法改进 Elman 神经网络的双压凝汽器真空预测   总被引:1,自引:0,他引:1  
为实现对凝汽器真空的优化控制,引入一种采用粒子群优化(PSO)算法改进的Elman神经网络,建立双压凝汽器真空预测模型,提出对双压凝汽器高、低压侧真空分别进行预测计算,将该模型应用于某600 MW机组的双压凝汽器真空预测,并与普通算法改进的Elman神经网络的预测结果进行比较。结果表明:采用PSO算法改进的Elman神经网络对双压凝汽器高、低压侧真空预测的收敛速度更快、精确度更高,是一种行之有效的双压凝汽器真空预测模型。  相似文献
8.
基于遗传和模拟退火算法优化的短期负荷预测   总被引:1,自引:0,他引:1  
负荷短期预测是电力系统运行和调度每年的重要工作,尤其在市场环境下负荷短期预测更显重要.对于电力系统短期负荷的随机性和突变性的特点,提出了应用遗传算法(GA)和模拟退火(SA)优化的Elman神经网络的短期负荷预测模型.其特点是模型简单、运算效率高,并具有较好的全局最优性能,从而很好地克服了传统BP算法容易陷入局部极小点的缺陷.利用改进Elman 网络的良好学习能力,同时利用遗传和模拟退火优化算法对Elman动态递归网络的前馈和反馈值进行优化,实现全局最优的拟合结果.比较了Elman网络和BP网络结构的建模效果,仿真实验证明了利用遗传和模拟退火算法优化的Elman神经网络具有动态特性好、逼近速度快、精度高等特点,说明Elman网络是一种新颖、可靠的负荷预测方法.  相似文献
9.
交流电弧炉电极智能预测建模及应用   总被引:1,自引:0,他引:1  
交流电弧炉电极控制系统是一个多变量、非线性、参数时变、复杂强耦合系统,传统方法很难建立其数学模型.为此从电极控制的实际应用出发,提出了一种变结构遗传Elman网络预测建模方法,其中改进的混合遗传算法用来对网络结构和权值及自反馈增益的同步动态寻优.并将基于BP算法的改进Elman网络和本文提出的变结构遗传Elman网络都应用于交流电弧炉的电极模型建模中.通过基于安钢现场数据的计算机仿真实验表明:变结构遗传Elman网络克服了因复杂对象造成的网络结构复杂问题和采用BP算法带来的权值训练缺陷;具有更好的动态性能,逼近速度快,精度更高等优点.  相似文献
10.
基于PSRT与Elman神经网络的短期负荷多步预测   总被引:1,自引:1,他引:0  
短期负荷预测(short-term load forcastings,STLF)对电力系统的经济和安全运行有着重要的作用。为提高短期负荷预测的精度,根据短期负荷的基本特性,提出了一种将相空间重构理论(phase space reconstruction space,PSRT)与Elman神经网络相结合的短期负荷多步预测模型。首先利用PSRT重构相空间的吸引子,然后用Elman神经网络来拟合相空间吸引子的多步演化,其中利用空间欧氏距离来选取Elman网络的输入样本。通过对广西电网短期负荷预测的分析表明,该多步预测方法是有效可行的。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号