首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13192篇
  免费   1656篇
  国内免费   903篇
电工技术   608篇
综合类   757篇
化学工业   2625篇
金属工艺   3012篇
机械仪表   570篇
建筑科学   71篇
矿业工程   132篇
能源动力   353篇
轻工业   1191篇
水利工程   7篇
石油天然气   147篇
武器工业   142篇
无线电   1343篇
一般工业技术   2228篇
冶金工业   1103篇
原子能技术   1261篇
自动化技术   201篇
  2024年   25篇
  2023年   313篇
  2022年   501篇
  2021年   621篇
  2020年   596篇
  2019年   558篇
  2018年   566篇
  2017年   592篇
  2016年   506篇
  2015年   434篇
  2014年   671篇
  2013年   899篇
  2012年   806篇
  2011年   888篇
  2010年   651篇
  2009年   723篇
  2008年   673篇
  2007年   925篇
  2006年   796篇
  2005年   660篇
  2004年   634篇
  2003年   494篇
  2002年   357篇
  2001年   317篇
  2000年   245篇
  1999年   218篇
  1998年   168篇
  1997年   154篇
  1996年   147篇
  1995年   103篇
  1994年   88篇
  1993年   93篇
  1992年   74篇
  1991年   54篇
  1990年   37篇
  1989年   36篇
  1988年   21篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   6篇
  1983年   4篇
  1982年   31篇
  1981年   20篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1959年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
2.
The phase shift characteristics reflect the state change of electromagnetic wave in plasma sheath and can be used to reveal deeply the action mechanism between electromagnetic wave and plasma sheath. In this paper, the phase shift characteristics of electromagnetic wave propagation in plasma were investigated. Firstly, the impact factors of phase shift including electron density,collision frequency and incident frequency were discussed. Then, the plasma with different electron density distribution profiles were employed to investigate the influence on the phase shift characteristics. In a real case, the plasma sheath around the hypersonic vehicle will affect and even break down the communication. Based on the hypersonic vehicle model, we studied the electromagnetic wave phase shift under different flight altitude, speed, and attack angle. The results indicate that the phase shift is inversely proportional to the flight altitude and positively proportional to the flight speed and attack angle. Our work provides a theoretical guidance for the further research of phase shift characteristics and parameters inversion in plasma.  相似文献   
3.
The quantification of hydrogen peroxide(H_2O_2) generated in the plasma-liquid interactions is of great importance, since the H_2O_2 species is vital for the applications of the plasma-liquid system.Herein, we report on in situ quantification of the aqueous H_2O_2(H_2O_2 aq) using a colorimetric method for the DC plasma-liquid systems with liquid as either a cathode or an anode. The results show that the H_2O_2 aqyield is 8–12 times larger when the liquid acts as a cathode than when the liquid acts as an anode. The conversion rate of the gaseous OH radicals to H_2O_2 aqis 4–6 times greater in the former case. However, the concentrations of dissolved OH radicals for both liquid as cathode and anode are of the same order of tens of n M.  相似文献   
4.
In this study, monolithic B4C and B4C-based ceramics incorporating FeNiCoCrMo dual-phase (FCC and BCC) high entropy alloys (HEAs) were produced by spark plasma sintering (SPS). The effect of additives on the densification behavior, mechanical properties, microstructures, and phase evaluation of the samples were investigated. X-ray analysis confirmed the existence of FCC structured HEA and depletion of BCC structured HEA, after high-temperature reaction between B4C-HEAs. The addition of HEAs enhanced the densification behavior by liquid phase sintering. Furthermore, hardness and fracture toughness values of the samples increased with increasing HEAs content. Fracture toughness and hardness values for all composites were higher than the monolithic B4C. A combination of the highest density (∼99.22 %) and the best mechanical properties (32.3 GPa hardness and 4.53 MPa m1/2 fracture toughness) was achieved with 2.00 vol.% HEA addition.  相似文献   
5.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   
6.
《Ceramics International》2022,48(8):10412-10419
Dense nickel-zinc (NiZn) ferrite ceramics were successfully fabricated within tens of seconds via spark plasma sintering. The phase composition and microstructure of the sintered samples were characterized by X-ray diffraction and scanning electron microscopy, respectively. The static magnetic properties at room temperature and Curie temperature of the samples were investigated by vibrating sample magnetometry. The results indicated that the main phase of the sintered samples was Ni0.75Zn0.25Fe2O4 with spinal structure, and the sintering temperature and heating rate observably affected the microstructure and density, then the magnetic properties of the sample. The Joule heat generated by NiZn ferrite during spark plasma sintering was very important for the rapid preparation of the sample with high density and small grain size. The low sintering temperature and heating rate would be helpful to obtain samples with small grain size, high density, and then good magnetic properties. The samples sintered at 900 °C with the heating rate of 5–10 °C/s were characterized of the relative density above 95%, 4πMs value beyond 4000 Gs and coercivity below 27.7 Oe.  相似文献   
7.
《Ceramics International》2022,48(11):15640-15646
Ferroelectric ceramic with a large electrocaloric (EC) effect at a very low electric field is very attractive in the next solid state refrigeration technology. In this work, two Pb(Sc0.25In0.25Nb0.25Ta0.25)O3 (PSINT) medium-entropy ceramics were successfully synthesized by a spark plasma sintering (SPS) technology, including one-step-SPS processed and two-step-SPS processed samples. A large EC effect (△T ~ 0.85 K) with a high EC strength (△T/△E ~ 0.021 K cm/kV) around room temperature are obtained at a very low electric field (~40 kV/cm) in the two-step-SPS processed sample. Moreover, the working temperature range is very broad (~120 K), which can be responsible for the high relaxation degree of the dielectric peak. It can be believed that the PSINT medium-entropy ceramics can be promising candidates for application in the next-generation EC cooling devices.  相似文献   
8.
《Ceramics International》2022,48(20):29601-29613
Sliding wear behaviors of atmospheric plasma-sprayed Yttria Stabilized Zirconia (YSZ) coating mated with four metallic or ceramic counterparts (Si3N4, Al2O3, GCr15 and ZrO2) were investigated. It has been found that YSZ coatings in contact with Si3N4 and GCr15 show better tribological performances than the other cases, which is due to the formation of the tribolayer mainly consisting of Si3N4 and Fe2O3 respectively on the worn surfaces. In the case of YSZ coating-Al2O3 and YSZ coating-ZrO2 tribopairs, the wear debris are more irregular and larger in size, resulting in severe abrasive wear and brittle fracture of debris particles. In particular, the specific wear rate of YSZ coating sliding against GCr15 is negative due to the significant material transfer of the tribo-oxide layer, while that of YSZ coating sliding against ZrO2 is the highest. Amorphization of the wear particles appears in the four cases due to the repeated mechanical action. It has been demonstrated that the wear of YSZ coating deteriorates with the increased flash temperature between the contact surfaces during rubbing process.  相似文献   
9.
目的 建立电感耦合等离子发射光谱法测定乳扇中铝含量的分析方法。调查市售样品中铝的含量是否异常。方法 采用湿式消解法处理乳扇样品, 电感耦合等离子发射光谱测定样品中铝的含量, 同时进行精密度实验和加标回收实验。测定市场收集的乳扇样品中铝的含量, 并与严格按云南省地方标准(DBS 53/010-2016)制作的乳扇样品进行比较。结果 铝在0~10 mg/L范围内线性关系良好, 相关系数r达0.999928, 方法的检出限为0.5 mg/kg, 定量限为1.5 mg/kg, 精密度为2.5%~3.1%, 加标回收率在96.6%~105.0%之间。按地方标准制作的乳扇样品中铝含量较低, 在3.2~5.3 mg/kg之间, 部分市场收集的样品中铝含量偏高。结论 本方法操作简便、结果准确, 可作为乳扇中铝含量检测的方法。乳扇应严格按照地方标准制作。  相似文献   
10.
利用放电等离子烧结(SPS)技术制备了HA/Ti-24Nb-4Zr生物复合材料,研究了不同退火温度对复合材料显微组织和力学性能(抗压强度、屈服强度、屈强比、压缩弹性模量)的影响。结果表明,烧结态复合材料主要由β-Ti相、少量初生α-Ti相及HA相组成;随着退火温度的升高,复合材料基体中β-Ti相含量增多且晶粒逐渐长大,针状次生α-Ti相在晶界处和晶内不断析出,HA相结构和含量变化不大;与烧结态相比,不同退火温度处理后的复合材料强度和弹性模量先略微上升后下降,而塑韧性呈不断提高趋势;复合材料在850 ℃退火处理后,抗压强度、屈服强度、屈强比和压缩弹性模量值分别为1507 MPa、1270 MPa、0.84和42 GPa,塑韧性得到明显改善,作为生物医用植入材料具有潜在的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号