首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1893篇
  免费   52篇
  国内免费   33篇
电工技术   130篇
综合类   21篇
化学工业   689篇
金属工艺   148篇
机械仪表   70篇
建筑科学   20篇
矿业工程   4篇
能源动力   257篇
轻工业   25篇
石油天然气   31篇
武器工业   2篇
无线电   225篇
一般工业技术   218篇
冶金工业   15篇
原子能技术   9篇
自动化技术   114篇
  2024年   2篇
  2023年   24篇
  2022年   43篇
  2021年   40篇
  2020年   47篇
  2019年   52篇
  2018年   61篇
  2017年   54篇
  2016年   65篇
  2015年   39篇
  2014年   85篇
  2013年   94篇
  2012年   89篇
  2011年   188篇
  2010年   149篇
  2009年   146篇
  2008年   159篇
  2007年   127篇
  2006年   93篇
  2005年   68篇
  2004年   68篇
  2003年   46篇
  2002年   40篇
  2001年   25篇
  2000年   23篇
  1999年   22篇
  1998年   23篇
  1997年   14篇
  1996年   23篇
  1995年   13篇
  1994年   19篇
  1993年   8篇
  1992年   13篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
排序方式: 共有1978条查询结果,搜索用时 218 毫秒
1.
The possibility of hydrogen electrosorption in microporous activated carbons for acidic and alkaline electrolytes is shown. The electrochemical behavior of activated carbon fiber CH-900-20 has been investigated to find out the main factors, which influence the charging processes of microporous electrodes. The following methods were used: cyclic voltammetry, electrochemical impedance spectroscopy, chronoamperometry, and chronopotentiometry. A comparative analysis of the influence of the electrolyte type and electrode structure on the capacitance performances of carbon has been carried out. It is assumed that there is a potential barrier at the interface between micropores and macropores. The features of the process of hydrogen electrosorption in carbon micropores have been analyzed in detail. A possible mechanism of electrosorption in micropores that decreases the capacitance of the electric double layer with a corresponding drop of the electronic conductance of activated carbons in acidic electrolytes has been suggested. The influence of temperature on the kinetics of hydrogen electrosorption has been shown and the activation energy of this process has been estimated. An assumption has been made about the influence of the semiconductor conductivity of activated carbons on the capacitive and resistive characteristics of the electrodes.  相似文献   
2.
In this study, the intermediate rare-earth oxide Gd2O3 (Gd) was substituted in different amounts (x = 0.2–2 mol%) for the formulation of BaTi1-xGdxO3-x/2 (BTGx) dielectric materials. The effect of B-site substitution was confirmed by the additional Raman active A1g octahedral peak at ~835cm-1 strengthened at x ≥ 0.4 mol%. Additionally, properties of 0.9BTG0.007-0.1BA dielectric ceramics were analysed based on the influence of various processing methods as a function of sintering temperature. The focal samples were labelled Method-A (direct-mix) and Method-B (indirect-mix). As the sintering temperature (1075–1200 °C) increased, the 1 kHz response of the ε–T curves of Method-A samples transformed from a single peak to broad-narrow double peaks of high dielectric loss tangent (tan δ). Nonetheless, samples of Method-B possessed a clearly defined transmission electron microscopy (TEM) core-shell structure, flattened double-peak ε-T curves, optimised dielectric properties (ε = ~1563–1851 and tan δ < 1.5% at room temperature), and a wide-ranging temperature behaviour that meets the X8R dielectric standards (ΔC/C25°C < ±15%). The maximum dielectric breakdown strength of Method-B samples reached ~131 kVcm, while the energy storage density was ~0.726 J/cm3 at a maximum efficiency of ~80% at 1100 °C. Thus, exhibiting good potentials for balancing temperature stability with energy storage applications.  相似文献   
3.
4.
MgAl2-2xMn2xO4 (MAMO) with x = 0-0.12 was synthesized in a single-phase form by solid-state reaction. XRD analysis showed that the samples had the cubic center structure of the Fd-3 m space group. Electrical properties of the samples were studied over the temperature range of 300 K∼1073 K. The results showed that the DC conductivity (σDC) increased from 10−11S/cm at 300 K (MAMO, x = 0) to 10-3S/cm at 1073 K (MAMO, x = 0.12). The equivalent circuit of the complex impedance spectra suggested that the relaxation of charge carriers was of non-Debye type. The conduction was mainly caused by grain boundaries and the capacitance was mainly attributed to polarization. The complex permittivity values (ε’ and ε’’) were increased by two orders of magnitude with the increase in Mn content and temperature over the measured frequency range (1 Hz-1 MHz). Therefore, doping with Mn could be applied to modify the electrical properties of MAMO at high temperature.  相似文献   
5.
《Ceramics International》2022,48(13):18286-18293
The solid solution of (Sm0.75Bi0.25FeO3)0.5 (BaTiO3)0.5 perovskite system is developed through conventional solid state reaction route. Prepared compound is thoroughly analyzed for its multipurpose use by studying its multiferroic character. The XRD spectra verifies the synthesized material is crystallize in tetragonal structure (space group = P4mm). The identification of the involved elements and their actual oxidation states are inspected through X-ray photoelectron spectroscopic (XPS) technique. Dielectric studies reveal the material has high dielectric constant at room temperature for possible storage devices. The relaxation process in the system is related to the short-range portability of charge transporters as studied from modulus spectra. Material can be beneficial for memory devices according to the room temperature multiferroic studies.  相似文献   
6.
《Ceramics International》2022,48(5):6758-6766
La2Ce2O7 (LCO) based materials are of a paramount importance since they can be utilized for ammonium production, thermal barrier application, catalysts, hydrogen production and solid oxide fuel cells (SOFCs). In this work, a nano crystalline LCO powder was prepared using glycine-nitrate combustion method and then its properties were comprehensively characterized. The structural analysis of the synthesized LCO was carried out using conventional X-ray diffraction (XRD) and Raman spectroscopy. In a disordered phase, LCO is a biphasic mixture composed of C- and F-type phases. Densification studies were performed by sintering LCO pellets at different sintering temperatures. A densification of ≥95% was observed in all the samples with a very little variation. Sintering temperature had a marked effect on the electrical conductivity of LCO. The LCO sintered at 1100 °C showed the highest conductivity (3.68 mS/cm at 700 °C in air). The electrical conductivity was found to be decreasing with an increase in sintering temperature from 1100 to 1400 °C. To understand the behavior, the analysis of distribution function of relaxation times (DFRTs) utilized for correct separation of grain and grain boundary resistances. The presence of C- and F- type phases calculated from Raman spectra plays a crucial role in deciding conduction behavior of LCO. The results suggest a strong relationship between history of the ceramics preparation and their electrical properties.  相似文献   
7.
8.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   
9.
The electrical properties of cubic, calcia-stabilised zirconia ceramics, CaxZr1-xO2-x: 0.12 ≤ x ≤ 0.18 have been investigated using impedance spectroscopy to separate bulk, grain boundary and electrode contact impedances. The most appropriate equivalent circuit to characterise the bulk response required inclusion of a dielectric component, represented by a series RC element, in parallel with the oxide ion conductivity represented by a parallel combination of a resistance, capacitance and constant phase element. The dielectric component may be attributed to defect complexes involving immobile oxygen vacancy pairs whereas long range conduction involves single oxygen vacancies.  相似文献   
10.
This paper describes and discusses the application of the original sintering process named cold sintering to the electrolyte material BaCe0.8Zr0.1Y0.1O3-δ to enhance its densification at a temperature below that needed in a conventional sintering. This new technique enables the acceleration of the densification resulting in a more compacted microstructure with an unexpected high relative density of 83 % at only 180 °C. A subsequent annealing at 1200 °C further enhances the densification which reaches 94 %. The electrochemical performance of CSP sintered ceramics was investigated and optimized by varying different process parameters. The comparison with the conventional sintered material reveals an increase of the total conductivity by mostly increasing the grain boundary one. This result emphasizes the benefits of CSP to not only reduce the sintering temperature but also to enhance the electrochemical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号