首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1879篇
  免费   36篇
  国内免费   22篇
电工技术   10篇
综合类   29篇
化学工业   673篇
金属工艺   142篇
机械仪表   95篇
建筑科学   26篇
矿业工程   31篇
能源动力   315篇
轻工业   132篇
水利工程   7篇
石油天然气   13篇
武器工业   2篇
无线电   71篇
一般工业技术   279篇
冶金工业   68篇
原子能技术   14篇
自动化技术   30篇
  2023年   15篇
  2022年   27篇
  2021年   29篇
  2020年   35篇
  2019年   33篇
  2018年   34篇
  2017年   54篇
  2016年   46篇
  2015年   58篇
  2014年   114篇
  2013年   226篇
  2012年   72篇
  2011年   133篇
  2010年   117篇
  2009年   105篇
  2008年   80篇
  2007年   101篇
  2006年   105篇
  2005年   81篇
  2004年   76篇
  2003年   60篇
  2002年   64篇
  2001年   43篇
  2000年   37篇
  1999年   49篇
  1998年   18篇
  1997年   24篇
  1996年   23篇
  1995年   18篇
  1994年   15篇
  1993年   12篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
排序方式: 共有1937条查询结果,搜索用时 624 毫秒
1.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
2.
《Ceramics International》2020,46(6):7396-7402
Nanocrystalline CuInS2 thin films were deposited on borosilicate glass substrates via chemical spray pyrolysis method. The structural, morphological, optical, and electrical properties were studied as a function of increasing annealing temperature from 250 to 350 ̊C. XRD analysis showed mixed phases at lower temperatures with the preferred orientation shifting towards the (112) chalcopyrite CuInS2 plane at higher substrate temperature. The crystallite size increased slightly between 13 and 18 nm with increase in annealing temperature. The optical band gap was determined on basis of Tauc extrapolation method and the Wemple–Di-Domenico single oscillator model. Possible structural and quantum confinement effect may have resulted in relatively larger band gaps of 1.67–2.04 eV, relative to the bulk value of 1.5 eV. The presence of CuxS in the as-deposited and wurtzite peaks after annealing at 350 ̊C play a role in influencing the optical and electrical properties of CuInS2 thin films.  相似文献   
3.
A series of spray coating experiments were conducted on an UV-curable, polyurethane-modified, acrylate-based coating formulation with the aim to control defects, coating thickness, and thickness variation. Statistical approaches including design of experiment, residual examination, analysis of variance, and t-test were used in designing the experiments and analyzing data. Viscosity of formulation, atomizing pressure, liquid feeding pressure, distance between nozzle and substrate, and travel speed of substrate were the process variables studied. The ranges of process variables that gave defect-free coating were identified and used in the subsequent experiments to determine process variables and interactions that had significant contribution to the changes in coating thickness and thickness variation. All process variables studied were found to have contribution to the change in coating thickness, but they showed no significant contribution to the variation of coating thickness. No interaction displayed significant contribution. Confirmation tests performed on extra samples prepared with varying coating thicknesses indicated a good agreement with the experimental results. Additional samples were tested for total transmittance, transmission haze, adhesion, surface roughness, hardness, scratch hardness, abrasion resistance, and durability to attack of car wash chemicals. Spray coated samples showed slight improvement in the total transmittance over the uncoated samples, while maintaining the transmission haze and exhibiting rougher surfaces. Only samples with thin coatings were found to possess sufficient adhesion to the substrate. These thin coatings gave improved hardness, scratch hardness, and durability to car wash attack to the level comparable to commercial coated polycarbonate headlamp lenses, whilst giving better abrasion resistance.  相似文献   
4.
Spray quality is the critical factor which decides the efficacy of Small Quantity Lubrication (SQL) technology in a high specific energy involved machining process like grinding. Yet, the understanding about spray quality, the actual process mechanics and its effect on machining performance is inadequate. The present work is an attempt to establish a correlation between the spray input variables, quality of the spray and machining performance of SQL grinding through modelling and experiments. Using computational fluid dynamic techniques, the variation of droplet size, droplet velocity, number of droplets and heat transfer coefficient have been analysed at different input parameters and the computed trends have been verified and validated. CFD modelling of spray indicates that it is possible to produce aerosol medium with high heat dissipation ability at moderately high air pressure and low flow rate. It also shows that any increase in atomising air pressure favourably leads to notable increase in wetting area and also results in substantial enhancement in heat dissipation ability. Reduction of residual stress is thus remarkably good. On the other hand, grinding fluid flow rate, if increased, offers significantly better lubricity and reduces the grinding force which also reduces tensile residual stress. Short spell grinding test results are found to be in good agreement with CFD results.  相似文献   
5.
In this work it is presented a study on the residence time distribution (RTD) of particles in a co-current pilot-plant spray dryer operated with a rotary atomization system. A nuclear technique is applied to investigate the RTD responses of spray dryers. The methodology is based on the injection of a radioisotope tracer in the feed stream followed by the monitoring of its concentration at the outlet stream. The experiments were performed during the drying of aqueous suspensions of gadolinium oxide. The RTD responses obtained experimentally presented good reproducibility, indicating that the technique applied is well suited to investigating fluid-dynamics of spray dryers. In addition to the experimental investigation, a mathematical model was used to describe the RTD experimental curves.  相似文献   
6.
The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOX formation including thermal NO path, prompt and nitrous NOX formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.  相似文献   
7.
The phenomenon of droplets impacting and evaporating on a hot surface is of interest in many areas of engineering. Quantitative measurement of these processes provides great help to reveal the physics behind. A novel technique was developed to quantitatively measure the volume evolution and contact diameter of an evaporating microdroplet on a hot surface utilizing interference fringe scattering method. In this method, fine fringes produced by the interference of two coherent laser beams was scattered by the droplet and projected onto a screen. The profile and volume of the droplet can be derived from the spatial fringe spacing on the screen. The number of total fringes measurable on the screen was used to determine the instantaneous contact diameter of the microdroplet. Validation experiments demonstrated that the measurement errors are less than ±5% and ±1% for microdroplet volume and contact diameter, respectively. By using this method, the dynamic of droplet impingement, evaporation and boiling using ethanol, pure water and water solution of a surfactant (sodium dodecyl sulfate) with impact velocity of 7.5 m/s and diameters ranged from 0.19 to 0.46 mm were investigated.  相似文献   
8.
Skim and whole milk powders were manufactured at lab scale by spray freeze drying (SFD), using liquid nitrogen as the cryogen. The polydispersity of droplet/particle sizes was limited using an encapsulator nozzle to atomize the feed. Particle morphology was examined using a scanning electron microscope. Samples were compared with equivalent spray-dried powders in tests of wettability and dissolution in water. The spray freeze-dried powders were found to be highly porous, with a uniform structure of pores throughout the entire particles. When tested in water, SFD skim milk powders wetted roughly three times as fast as industrially spray-dried agglomerated skim milk powders and were observed to dissolve rapidly by breaking down into smaller particles.  相似文献   
9.
刘成信  彭著刚 《柳钢科技》2007,(F09):186-188
通过测试连铸二冷喷嘴性能,对比同型号喷嘴使用前后两种状态下特性参数,分析了喷嘴参数变化的原因。提出了对使用中的喷嘴特性进行检测与校核的建议,以确保喷嘴特性满足铸坯二冷工艺条件,保证铸坯质量。  相似文献   
10.
Current methods in alleviating the wall deposition problem in spray drying emphasize mainly controlling the stickiness of the drying particles and less attention is placed on the properties of the dryer wall. In this experimental study, the effect of wall surface properties on the deposition mechanism has been investigated. Properties considered in classifying different wall materials were surface energy, roughness, and dielectric properties. The model solution contained sucrose, representing low-molecular-weight sugars commonly encountered in spray drying of fruit and vegetable juices. The effect of wall properties on deposition was explored at different drying rates producing particles of different surface rigidity. Larger surface roughness produced higher deposition fluxes for particles with high impact velocity and moisture. Surface energy and surface roughness were found to have no significant effect for dry rigid particles at the middle and bottom elevation of the drying chamber. However, material with lower surface energy (Teflon) exhibited less deposition for rubbery particles at such elevations. Analysis shows that dielectric wall material (Teflon) tends to enhance deposition of dry particles because of attrition at the surface. Higher wall temperature was found to produce slightly more deposition. The results of this work give a general indication of the effect of wall material on the deposition problem and provide the fundamental understanding for further studies along this line. Proper selection of dryer wall material will provide potential alternatives for reducing the deposition problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号