首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  国内免费   1篇
综合类   2篇
金属工艺   4篇
一般工业技术   3篇
冶金工业   4篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Mg-Nd-Zn-Zr稀土镁合金的热变形行为   总被引:17,自引:6,他引:17  
采用GLEEBLE-1500热模拟机对Mg-Nd-Zn-Zr稀土镁合金在温度为250~450.℃、应变速率为0.002~0.100.s-1、最大变形程度为60%的条件下, 进行高温压缩模拟实验研究. 分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系, 计算了变形激活能和应力指数, 并研究了在热压缩过程中组织的变化, 为确定该稀土镁合金的挤压温度提供了实验依据. 结果表明: 合金的峰值流变应力随应变速率的增大而增加, 随温度的升高而降低; 合金的变形激活能在300~400.℃内变化不大, 而在400~450.℃时增加很大; 根据实验分析认为该稀土镁合金挤压温度定在350~400.℃左右为宜; 在350.℃左右顺利挤出的实验合金有很好的力学性能: σb=275.5.MPa, δ=13.5%.  相似文献   
2.
The hot-compression of Al-1Mn-1Mg (mass fraction, %) alloy sample was carried out on a Gleeble-1500 thermo-simulator at deformation temperatures from 320 to 400 ℃ and strain rates from 0.1 to 10 s-1 by total strain of 1.4. Microstructure and texture evolution of the hot-compressed alloy were investigated by optical microscopy and X-ray diffraction analysis, respectively. The results show that the relationship among flow stress σ, deformation temperature T and strain rate ε can be expressed in the form of βσ...  相似文献   
3.
In hot-compression process, the various factors have obvious effects on the deformation behavior of AZ31 magnesium alloy deformation behavior. To understand the hot-compression constitutive relation thoroughly, the stress-strain behavior of AZ31 magnesium alloy at various strain rates and different deformation temperatures were investigated under maximum strain of 60%. The microstructure of the experimental alloy was studied in the hot-compression procedure. The experimental results show that the relation of peak flow stress, strain rate and temperature can be described by Z parameter which contains Arrheniues item. The strain rate and the deformation temperature are the key parameters affecting deformation activation energy.  相似文献   
4.
ABSTRACT

Medium-Mn steels are energetically investigated as a candidate of the third generation advanced high strength steels (AHSSs). However, their phase transformation and microstructaure evolution during various heat treatments and thermomechanical processing are still unclear. The present study first confirmed the kinetics of static phase transformation behaviour in a 3Mn-0.1C medium-Mn steel. Hot compression tests were also carried out to investigate the influence of high-temperature deformation of austenite on subsequent microstructure evolution. It was found that static ferrite transformation was quite slow in this steel, but ferrite transformation was greatly accelerated by the hot deformation in austenite and ferrite two-phase regions. Characteristic dual-phase microstructures composed of martensite and fine-grained ferrite were obtained, which exhibited superior mechanical properties.

This paper is part of a Thematic Issue on Medium Manganese Steels.  相似文献   
5.
粗晶Mg-3Gd-1Zn合金高温压缩变形过程中的动态再结晶   总被引:1,自引:0,他引:1  
研究了粗晶Mg-3Gd-1Zn合金在723 ~823 K,应变速率0.100 ~0.001s-1条件下单轴压缩变形过程中的动态再结晶行为.研究结果表明,其热压缩曲线为典型的动态再结晶型,峰值流变应力和稳态流变应力随温度的升高而减小,随应变速率的增大而增大;在该实验温度范围内其变形激活能约为140 kJ·mol-1;再结晶晶粒尺寸lnd与lnZ参数偏离线性关系,且变形温度对再结晶晶粒尺寸的影响比应变速率更大.利用金相和电子背散射技术(EBSD)对773 K,0.010 s-1条件下压缩不同变形量的Mg-3Gd-1Zn合金进行了组织表征,发现其动态再结晶大都发生在孪晶界及其与原始晶界的交叉处,主要为孪生诱发动态再结晶形核(TDRX)机制.再结晶形核初期形状不规则,晶界倾向于呈直角,随着应变量的增大,由于晶界的局部迁移,再结晶晶粒逐渐转变为稳定的等轴晶.  相似文献   
6.
采用热压成型法制备了4种不同尺寸, 即125~180 μm、180~425 μm、425~850 μm和850~2 000 μm的杨木纤维(PWF)/高密度聚乙烯(HDPE)复合材料, 并对PWF/HDPE复合材料进行了弯曲性能测试、冲击性能测试、动态热力学分析(DMA)、24 h蠕变-24 h回复测试和1 000 h长期蠕变测试。结果表明:PWF的尺寸过大或者过小均不利于提高PWF/HDPE复合材料的弯曲性能, 增强效果最好的是425~850 μm PWF/HDPE复合材料, 其弯曲强度达到26.71 MPa, 弹性模量达到2.73 GPa;PWF长度从180 μm增加到2 000 μm, PWF/HDPE复合材料的抗冲击性能变化不大;125~180 μm PWF/HDPE复合材料的抗冲击性能较差;短PWF/HDPE复合材料的抗蠕变性能较差, 不适合在长期负载的条件下工作, 而850~2 000 μm的长PWF/HDPE复合材料的抗长期蠕变性能最好, 且回复率最高, 为78.46%;1 000 h形变仅为0.809 mm, 对比其他尺寸的PWF/HDPE复合材料1 000 h 形变的平均值降低了48.00%。   相似文献   
7.
研究Mg-8Gd-3Y-0.6Zr合金热压缩过程的动态再结晶规律.对该合金在变形温度为623~773 K、应变速率为0.01~1 s~(-1)条件下进行单向压缩实验,用金相显微镜、场发射扫描电子显微镜及织构测试仪对压缩后的合金组织与晶体取向进行分析.结果表明:曲线的峰值应力、稳态流动应力均随Zener-Hollomon (Z)参数的增加而增加;变形温度的升高以及应变速率的提高均能减弱{0001}基面织构,强化柱面织构;动态再结晶晶粒尺寸随Z参数的增加而减小.根据实验结果,该合金在热轧时ln(Z)宜控制在28~32之间,变形温度在723~773 K之间.  相似文献   
8.
采用Gleeble-1500热模拟机研究Mg-Zn-Nd-Cd-Zr合金在温度为300~420℃、应变速率为0.001~1S-1、最大变形程度为80%的条件下的高温变形行为.采用光学显微镜及透射电镜研究Mg-Zn-Nd-Cd-Zr镁合金在不同压缩变形条件下的组织形貌特征.结果表明:在实验条件下,合金的流变应力-应变曲线...  相似文献   
9.
The characteristics of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr-RE magnesium alloy were investigated by compression tests at temperatures between 523 and 723 K and at strain rates ranging from 0.002 to 1 s^-1 with maximum strain of 0.693. The strainhardening rate can be obtained from true stress-true strain curves, plots of θ-σ, -(δθ/δσ-)-a and lnθ-σ in different compression conditions were obtained by further study. The critical condition of the onset of DRX process was determined as ((δ/δσ( δθ/δσ))=0. In the range of the above deformation temperature and strain rate, the ratio of critical stress (σc) to peak stress (σm) and critical strain (εc) to the peak strain (εm) stood at σc/σm=0.62-0.89 and εc/εm=0.11-0.37, respectively. DRX could be observed during hot detormation process, microstructure evolution of the magnesium alloy at different temperatures and strain rates were studied with the aid of optical microscope(OM), and the average recrystallized grain size was measured by means of intercepts on photomicrographs. It was shown that the average dynamically recrystallized grain size (drew) changed with different deformation parameters, the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of Zener-Hollomon parameter; the peak stress changed with the average recrystallized grain size, and the natural logarithm of the average recrystallized grain size varied linearly with the natural logarithm of the peak stress.  相似文献   
10.
通过对四种实验钢的相变点进行理论计算,并通过热压缩变形实验,确定了实验钢的动态再结晶温度.结果表明:在满足动态再结晶发生的临界条件下,动态再结晶开始的临界应力与临界应变、峰值应力与峰值应变的比值在一定范围之内变化,在峰值点之前动态再结晶过程就开始发生.另外,分析了合金元素Cr、Ti和压缩变形温度对临界值和峰值的影响,为...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号