首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15381篇
  免费   337篇
  国内免费   187篇
电工技术   842篇
技术理论   1篇
综合类   305篇
化学工业   1791篇
金属工艺   430篇
机械仪表   595篇
建筑科学   1635篇
矿业工程   270篇
能源动力   4934篇
轻工业   201篇
水利工程   77篇
石油天然气   210篇
武器工业   33篇
无线电   1025篇
一般工业技术   1272篇
冶金工业   520篇
原子能技术   411篇
自动化技术   1353篇
  2024年   11篇
  2023年   282篇
  2022年   413篇
  2021年   524篇
  2020年   443篇
  2019年   397篇
  2018年   366篇
  2017年   417篇
  2016年   527篇
  2015年   497篇
  2014年   854篇
  2013年   824篇
  2012年   730篇
  2011年   1702篇
  2010年   1183篇
  2009年   1006篇
  2008年   867篇
  2007年   903篇
  2006年   653篇
  2005年   443篇
  2004年   349篇
  2003年   333篇
  2002年   255篇
  2001年   202篇
  2000年   182篇
  1999年   173篇
  1998年   181篇
  1997年   131篇
  1996年   148篇
  1995年   118篇
  1994年   112篇
  1993年   87篇
  1992年   71篇
  1991年   59篇
  1990年   54篇
  1989年   46篇
  1988年   38篇
  1987年   34篇
  1986年   24篇
  1985年   66篇
  1984年   52篇
  1983年   42篇
  1982年   52篇
  1981年   14篇
  1980年   20篇
  1979年   6篇
  1978年   6篇
  1976年   2篇
  1973年   2篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(12):17359-17368
In this work, 0.7BaTiO3-0.3Sr0.2Bi0.7TiO3 (0.7BT-0.3SBT) ceramics with 0.15 mol% various rare-earth oxides doped are designed and synthesized by the conventional solid-state route. All prepared samples exhibited a single perovskite phase and dense microstructure with fine grain size (0.2–0.5 μm) after sintering at 1180 °C. Especially, the Gd-doped 0.7BT-0.3SBT ceramics exhibited excellent energy storage performances; the corresponding recoverable energy density and efficiency were 3.2 J/cm3 and 91.5% under an electric field of 330 kV/cm, respectively. Meanwhile, doping with Gd caused the BT-based ceramics to possess excellent temperature (30–150 °C) and outstanding frequency stabilities (10–1000 Hz). Moreover, the pulsed charge-discharge experiments revealed that a high power density of 59 MW/cm3 and a fast discharge speed of 110 ns with outstanding temperature stability could be synchronously obtained in the Gd-doped composition. All these features are attractive for pulsed power applications.  相似文献   
2.
《Ceramics International》2022,48(20):30393-30406
Plasma methods are efficient processing for metal recovery from metal scrap, bearing minerals, electronic waste, etc. In this work, pure titanium nitride nanoparticles (TiN NPs) were synthesized from titanium scraps by the thermal plasma arc discharge (TPAD) method. TPAD synthesized TiN NPs have a highly crystalline nature with cubic and spherical morphologies with average particle sizes of 30–100 nm. Further, prepared TiN NPs involving surface modification (SM) or etching processes were investigated by using the non-thermal DC glow discharge plasma technique with air atmosphere at different processing times. SM@TiN NPs have a comparatively low crystalline, which was confirmed from the powder X-ray diffraction technique. SM@TiN NPs have very interesting core shell morphologies, which are due to the surface interactions of ionized air molecules. TiN and SM@TiN NPs have room-temperature ferromagnetic properties with high saturation magnetization (Ms) up to 2.6 and 3.0 emu/g and very high coercivity (Hc) of 235.5 Oe, respectively. TiN and SM@TiN NPs have superior energy storage performance with an outstanding specific capacitance of 192.8 and 435.1 F/g at a current density of 2 A/g with pseudocapacitive behavior. These results reveal that TiN and SM@TiN NPs have highly promising electrodes for supercapacitor applications.  相似文献   
3.
Aiming at improving the relatively low energy output and energy conversion efficiency of the micro-thermal voltaic (MTPV) system, an innovative heat recirculating micro combustor with pin fins is designed. The effects of pin fins arrangement, hydrogen/air equivalent ratio on the energy output and performance of CHMC, HMCP and HMCI are compared and investigated. The result shows that when the Vin is 6 m/s and Φ is 1.0, the emitter power of CHMC is 72.76W, and that of HCMP and HCMI micro combustor are 75.99W and 76.35W. and the emitter efficiency of CHMC, HCMP and HCMI is 41.93%, 43.26% and 44.01%. HMCI has better energy output capability compared with CHMC and HMCP. Even though, HMCI brings a higher pressure drop, it is within the acceptable range. When the Vin is 6 m/s, the pressure drop from the pin fins only accounts for 26.4% of the total pressure drop for HMCI. Through the study of equivalent ratio, it is found that HMCI has good adaptability in different equivalent ratio range. This work provides new ideas for the development of MTPV system in the future.  相似文献   
4.
In the last few decades, global warming, environmental pollution, and an energy shortage of fossil fuel may cause a severe economic crisis and health threats. Storage, conversion, and application of regenerable and dispersive energy would be a promising solution to release this crisis. The development of porous carbon materials from regenerated biomass are competent methods to store energy with high performance and limited environmental damages. In this regard, bio-carbon with abundant surface functional groups and an easily tunable three-dimensional porous structure may be a potential candidate as a sustainable and green carbon material. Up to now, although some literature has screened the biomass source, reaction temperature, and activator dosage during thermochemical synthesis, a comprehensive evaluation and a detailed discussion of the relationship between raw materials, preparation methods, and the structural and chemical properties of carbon materials are still lacking. Hence, in this review, we first assess the recent advancements in carbonization and activation process of biomass with different compositions and the activity performance in various energy storage applications including supercapacitors, lithium-ion batteries, and hydrogen storage, highlighting the mechanisms and open questions in current energy society. After that, the connections between preparation methods and porous carbon properties including specific surface area, pore volume, and surface chemistry are reviewed in detail. Importantly, we discuss the relationship between the pore structure of prepared porous carbon with surface functional groups, and the energy storage performance in various energy storage fields for different biomass sources and thermal conversion methods. Finally, the conclusion and prospective are concluded to give an outlook for the development of biomass carbon materials, and energy storage applications technologies. This review demonstrates significant potentials for energy applications of biomass materials, and it is expected to inspire new discoveries to promote practical applications of biomass materials in more energy storage and conversion fields.  相似文献   
5.
We propose a self-sustaining power supply system consisting of a “Hybrid Energy Storage System (HESS)” and renewable energy sources to ensure a stable supply of high-quality power in remote islands. The configuration of the self-sustaining power supply system that can utilize renewable energy sources effectively on remote islands where the installation area is limited is investigated. It is found that it is important to select renewable energy sources whose output power curve is close to the load curve to improve the efficiency of the system. The operation methods that can increase the cost-effectiveness of the self-sustaining power supply system are also investigated. It is clarified that it is important for increasing the cost effectiveness of the self-sustaining power supply system to operate the HESS with a smaller capacity of its components by setting upper limits on the output power of the renewable energy sources and cutting the infrequent generated power.  相似文献   
6.
The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 ± 2%, hydrogen generation of 32 ± 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT.  相似文献   
7.
《Ceramics International》2022,48(24):36620-36628
In order to solve the problem of low charging and discharging energy density of dielectric capacitors, the structure design of layered polymer matrix composites is carried out in this paper. Ba0.7Sr0.3TiO3, Ba0.8Sr0.2TiO3 and Ba0.9Sr0.1TiO3 nanoparticles were successfully prepared by the oxalate coprecipitation method. The surface of BaxSr1-xTiO3 was successfully coated with dopamine, which promoted the dispersion of the polymer matrix of the ceramic powder. Monolayer BaxSr1-xTiO3/PVDF composites containing BaxSr1-xTiO3 with different Ba/Sr ratios were successfully prepared by the casting method. Three-layer asymmetric composites with different fillers were successfully prepared by layer-by-layer casting. The phase and microstructure of the as-prepared materials were analyzed by XRD and SEM. The dielectric, electrical conductivity, ferroelectric and energy storage properties of the composites were tested. The effects and laws of the design of the three-layer asymmetric structure on the dielectric properties and energy storage properties of the layered composites are mainly studied. When the structure of the three-layer asymmetric composite is 1-2-3, the breakdown field strength reaches 330 kV/mm, the discharge energy density reaches 8.51 J/cm3, and the charge-discharge efficiency is 67%. This work demonstrates that layered composites with asymmetric properties can facilitate the development of electrical energy storage.  相似文献   
8.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
9.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   
10.
The low performance of open-cathode proton-exchange-membrane fuel cells (OCPEMFCs) is attributed to the low-humidity ambient air supplied to the cathode using electric fans. To improve the OCPEMFC performance, this paper proposes a novel humidification method by collecting water purged from the anode and supplying it to the open cathode. The OCPEMFC performance is evaluated at various humidifier distances from the cathode inlet, and it is compared with that where no humidifier is used when the OCPEMFC operates under three different current levels of 1, 5, and 8 A. The results show that the novel design improves the stack power, and optimal performance is achieved at a humidifier distance of 2 cm. The energy efficiency achieves an improvement between 1.4% and 1.8% when a humidifier is used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号