首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3893篇
  免费   31篇
  国内免费   164篇
电工技术   15篇
综合类   86篇
化学工业   319篇
金属工艺   794篇
机械仪表   1427篇
建筑科学   99篇
矿业工程   56篇
能源动力   128篇
轻工业   59篇
水利工程   6篇
石油天然气   68篇
武器工业   27篇
无线电   39篇
一般工业技术   682篇
冶金工业   151篇
原子能技术   23篇
自动化技术   109篇
  2024年   1篇
  2023年   37篇
  2022年   31篇
  2021年   74篇
  2020年   96篇
  2019年   69篇
  2018年   110篇
  2017年   80篇
  2016年   82篇
  2015年   151篇
  2014年   198篇
  2013年   479篇
  2012年   129篇
  2011年   281篇
  2010年   196篇
  2009年   241篇
  2008年   223篇
  2007年   218篇
  2006年   225篇
  2005年   144篇
  2004年   139篇
  2003年   165篇
  2002年   136篇
  2001年   123篇
  2000年   83篇
  1999年   93篇
  1998年   78篇
  1997年   57篇
  1996年   47篇
  1995年   22篇
  1994年   22篇
  1993年   15篇
  1992年   13篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
排序方式: 共有4088条查询结果,搜索用时 15 毫秒
1.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
2.
《Ceramics International》2022,48(20):30052-30065
The present work is attempted to improve the microhardness and wear properties of AISI 1020 steel by depositing TiB2–Fe composite coating using tungsten inert gas (TIG) cladding. In this study, different compositions of TiB2–Fe paste form were preplaced on the substrate plates and then TIG heat input was applied to deposit hard composite coating layer. The main objective of the present work was to explore the influence of TIG input current as well as iron content on the microstructure and surface properties of deposited coatings. Microhardness, microstructural and phase characterization of the coating have been done by the Vickers microhardness tester, scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS) and X-ray diffractrometer (XRD). The results showed that the microhardness of the TiB2–Fe coating was strongly influenced by the composition of the coating materials as well as the TIG processing current. The microhardness increases with decreasing Fe contents in the coating materials with constant processing current (90 A) as well as it also increases with decreasing processing current with the fixed composition of coating materials (80TiB2–20Fe). The maximum average microhardness found was 3082 HV0.1 for the coating of 100TiB2–0Fe composition ratio and 90 A processing current which was about 18 times higher than that of the substrate average microhardness value (163 HV0.1). Average wear rate evaluated by considering weight loss of the TIG cladded samples using pin on disc tribometer by the sliding distance of 864 m and 20 N normal loads. The wear results also showed that the coating contains 100 wt% of TiB2 (0 wt% of Fe) exhibited lower rate of wear 6.74 × 10?8 g/Nm which is about 24 times lower as compared to AISI 1020 mild steel wear rate (166.31 × 10?8 g/Nm).  相似文献   
3.
To enhance the tribological performance of Si3N4/TiC ceramics, MoS2/PTFE composite coatings were deposited on the ceramic substrate through spraying method. The micrographs and basic properties of the MoS2/PTFE coated samples were investigated. Dry sliding friction experiments against WC/Co ball were performed with the coated ceramics and traditional ones. These results showed that the composite coatings could significantly reduce the friction coefficient of ceramics, and protect the substrate from adhesion wear. The primary tribological mechanisms of the coated ceramics were abrasive wear, coating spalling and delamination, and the tribological property was transited from slight wear to serious wear with the increase of load because of the lower surface hardness and shear strength. The possible mechanisms for the effects of MoS2/PTFE composite coatings on the friction performance of ceramics were discussed.  相似文献   
4.
This article presents nanohardness, coefficient of friction (COF), and wear of Yttria-stabilized zirconia coatings (YSZ) deposited on 316L steel substrates and co-deposited with Al and Ag. YSZ coatings were deposited via RF sputtering reactive phase technique. It is widely known that the RF sputtering technique produces stoichiometric coatings with high homogeneity and density. The average thickness of the coatings was 200 nm, and the X-ray diffraction study (XRD) showed the formation of alumina alpha (α-Al2O3) and metallic silver in the YSZ coatings deposited with Al and Ag, respectively. The mechanical properties were evaluated by means of nanoindentation, and the wear resistance was studied with pin-on-disk technique. The addition of Ag to the YSZ coatings led to decreased hardness, while the YSZ coatings deposited with Al presented an increased hardness. Finally, YSZ coatings deposited with aluminum and silver had the lowest friction coefficient, while Ag-YSZ coatings had a COF very similar to that obtained in YSZ coatings. The wear resistance test showed that YSZ coatings deposited with Al had lower volume loss compared to YSZ coatings deposited with Ag. The wear mechanism in the deposited coatings is analyzed.  相似文献   
5.
《Ceramics International》2022,48(4):4710-4721
In this study, AA5083 sheets were reinforced with four different hybrid nanoparticles by friction stir processing (FSP) for the development of surface nanocomposites used in advanced engineering applications. The present research focused on improving the properties and tribological behaviour of AA5083 alloy surfaces, including novel hybrid nanoparticles and the intermetallic phase formed during FSP. A tribometer tester with a constant normal load was used to examine the tribological performance of the hybrid composites. After the wear test, a surface profiler inspector was used to analyse the morphology and surface roughness of the examined materials. The Vickers micro-hardness of the base metal and the manufactured composites were measured. During FSP, a new intermetallic phase of AlV3 was successfully formed at 300–400 °C in the hybrid nanocomposites containing VC particles. The reinforcements resulted in additional grain refining than FSP. The AA5083/Ta2C–Al2O3 exhibited the greatest grain refinement, a sixty-fold reduction in grain size compared to that of the base alloy. The results revealed that the hybrid nanocomposites containing VC particles demonstrated the most significant microhardness values inside the stirred zone as a result of the presence of the AlV3 phase, which was increased by 25–30%. Moreover, the mechanical properties were significantly improved for all manufactured nanocomposites. The tensile strength was increased by 28% through the hybridisation of AA5083 using a hybrid of VC-GNPs. The dispersion of Ta2C-GNPs and VC-GNPs in the matrix led to excellent interfacial adhesion, resulting in an enhancement in the mechanical properties. The AA5083/VC-GNPs surface composite outperformed other manufactured composites regarding wear resistance. In addition, due to GNPs soft nature, it reduced the coefficient of friction (COF) of the manufactured composites by 20–25% compared to other reinforcements.  相似文献   
6.
Due to the favorable tribological, mechanical, chemical, and thermal properties, carbon fiber reinforced ceramic composites, especially carbon fiber reinforced carbon and silicon carbide dual matrix composites (C/C–SiC), has been considered as high-performance frictional materials. In this paper, current applications and recent progress on tribological behavior of C/C–SiC composites are reviewed. The factors affecting the friction and wear properties, including the content of silicon carbide and carbon matrix, carbon fiber preform architecture, as well as the matrix modification by alloy additives and C/C–SiC composites under various test conditions are reviewed. Furthermore, based on the current status of researches, prospect of several technically available solutions for low-cost manufacturing C/C–SiC composites is also proposed.  相似文献   
7.
This paper describes a new method to evaluate the friction coefficient at the tool-work interface in machining process where high stress and temperature are caused. In order to examine the feasibility of the proposed method, the present report introduces the method and the results obtained only at room temperature. Ti6Al4V, SUS304, AISI1045, FCD 700, FCD 450 and FC300 were used as work materials, while TiN coated carbide tool, TiAlN coated carbide tool and P15 were used as tool materials. The proposed method provided the friction coefficients of different coatings against different work materials, and demonstrated the variability of friction coefficient and the anisotropy of surface roughness.  相似文献   
8.
Hydrogen fuel offers a cleaner fuel alternative to fossil fuel due to more efficient burning as well as reduces the environmental and health issues brought by fossil fuel usage. In engine application, regardless of either pure hydrogen or in combination with air or/and other biofuel, all the moving parts are exposed to friction and wear, and lubricant is used to minimize friction and wear for optimum operation. Thus, in this study, the use of microalgae oil as an alternative biolubricant is evaluated from the physicochemical and tribological aspects. It is found that modified microalgae oil (MMO) has demonstrated great anti-friction and anti-wear potential, particularly the 10% modified microalgae oil blend (MMO-10). The coefficient of friction is reduced (up to 10.1%) and significant reductions of wear loss and surface roughness are obtained in comparison to pure poly-alpha-olefin. Lubricant's heat dissipation is also enhanced with MMO addition, demonstrating great prospect for MMO for hydrogen-powered engine utilization.  相似文献   
9.
This communication presents the approaches set up for processing spinner flowmeter well logs in vertical wells with a single fluid phase, which is the most widely used in assessing wells productivity. These focus on improving the pipe hydraulics relationships so that the different fluid inputs throughout the well can be quantified. Since vertical flow inside wells varies with depth between laminar flows (very low Reynolds number, i.e. Re < 103) and turbulent (Re > 4·103) the aim has been to reduce the uncertainty in the transition interval. Starting from bibliographical data and/or well-known formulas for laminar and for turbulent flow, several continuous relationships have been developed for any regime: 1) an expression for the radial distribution of velocity inside the pipeline (velocity profile) was developed. 2) A relationship between the average velocity and the velocity at the axis (velocity factor) was created. 3) A third equation was generated to obtain the friction factor in smooth pipes (and starting from this, a new explicit equation for rough pipes). The purpose has been to have a set of empirical expressions of easy and continuous application for any regime, as an alternative to the use of computer simulations.  相似文献   
10.
采用选区激光熔化(SLM)、浸渗和真空烧结工艺制备了以AlSi10Mg为基体的多孔骨架填充聚四氟乙烯(PTFE)的自润滑复合材料。采用往复式Bruker UMT-3摩擦试验机研究了速度为5mm/s、不同载荷下复合材料的摩擦磨损性能,并采用SEM、EDS等对其成分、结构以及摩擦学行为进行了研究。结果表明,复合材料的平均摩擦因数和磨损率随着载荷的增加呈现先增大后减小的趋势;复合材料的摩擦稳定性主要由存储在骨架中的PTFE决定。其摩擦机制主要是在载荷的作用下,当磨擦表面发生磨损时,骨架中的PTFE将磨屑捕获,形成完整的PTFE润滑层,并且发生膜的转移,从而增加了复合材料的摩擦学稳定性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号