首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1174篇
  免费   25篇
  国内免费   111篇
电工技术   3篇
综合类   23篇
化学工业   305篇
金属工艺   249篇
机械仪表   20篇
建筑科学   57篇
矿业工程   30篇
能源动力   28篇
轻工业   31篇
水利工程   40篇
石油天然气   21篇
武器工业   1篇
无线电   14篇
一般工业技术   290篇
冶金工业   121篇
原子能技术   14篇
自动化技术   63篇
  2023年   9篇
  2022年   23篇
  2021年   33篇
  2020年   25篇
  2019年   31篇
  2018年   32篇
  2017年   32篇
  2016年   32篇
  2015年   38篇
  2014年   58篇
  2013年   129篇
  2012年   58篇
  2011年   124篇
  2010年   69篇
  2009年   80篇
  2008年   90篇
  2007年   64篇
  2006年   68篇
  2005年   46篇
  2004年   32篇
  2003年   51篇
  2002年   29篇
  2001年   22篇
  2000年   20篇
  1999年   13篇
  1998年   12篇
  1997年   20篇
  1996年   17篇
  1995年   14篇
  1994年   9篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1310条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):32847-32855
Mixed phase materials in the quasi binary diopside (CaMgSi2O6) – molybdite (MoO3) system were synthesized by a precipitation method. Materials were fabricated with diopside to molybdite ratios of 1:0, 10:1, 5:1, 2:1 and 1:1. XRD, SEM and EDS results show that alongside the initial diopside phase, phases such as calcium molybdate CaMoO4, rod-like enstatite MgSiO3 and cristobalite SiO2 formed as the molybdite content increased, and diopside was entirely absent at the highest molybdite content. At lower Mo content, mixed phase materials showed higher hardness and slower biodegradation in SBF relative to pristine diopside, while maintaining reasonable hydroxyapatite (HAp) formation capability. In contrast, materials with higher molybdite content exhibited lower hardness and bioactivity. The variation in the mechanical and bioactive performance could be attributed to the presence of bulk CaMoO4, acting as a reinforcement, and rod-like MgSiO3 with a highly porous and fragile structure. The trend of hardness is not consistent to the proportion of the component phases could be attributed to morphologies, interfaces, and densities of the samples. Both of secondary phases had poorer HAp deposition compared to pure diopside, indicating the MoO3 addition lowered mixed phase CaMgSi2O6 – MoO3 bioceramics’ ability to form Hap. The results suggest that moderate addition of molybdite to diopside would be an effective pathway towards crystalline bioceramics with enhanced performance.  相似文献   
2.
于洋 《江西水利科技》2022,48(3):179-182,188
旱灾具有出现频率高、持续时间长、波及范围广等特点,本文运用降水距平百分率、Z指数、SPI标准化降水指数,对朝阳地区50a(1969~2018)干旱特征进行分析。结果表明:Z指数与SPI标准化降水指标得到的朝阳地区干旱特征情况基本一致,能较好地反映出该地区的干旱特征,朝阳地区1969~2018年自然灾害频繁发生,严重干旱年份主要集中在1980、1981、1982 年,与实际相符。  相似文献   
3.
《Ceramics International》2019,45(12):14775-14782
In this article, we have reported a one-step scalable synthesis of MgCo2O4 nanostructures as efficient anode material for Li-ion batteries and investigated the role of post-synthesis calcination temperature (400, 600 and 800 °C) on its physiochemical properties and electrochemical performances. The XRD pattern of the calcinated sample at 400 °C (MC 400) indicates a pure phase of MgCo2O4. However, on increasing the calcination temperature to 600 °C (MC 600), an additional phase corresponding to MgO was detected and the corresponding XRD peak intensity further increased on increasing the calcination temperature to 800 °C (MC 800 °C). This was accompanied by a morphological transformation from flake and rod-like nanostructures, to an agglomerated dense flake-like morphology. Electrochemical studies revealed that the calcination temperature plays an important role in determining the electrochemical performance of the MgCo2O4 as anode material. In a half cell, the MC 600 showed the best electrochemical performance with high discharge capacity of 980 mA h g−1 (2nd discharge at 60 mA g−1) and a reversible discharge capacity of 886 mA h g−1 at the end of 50 cycles with high coulombic efficiency of 98%. Long term stability was carried out at 0.5C which showed a capacity retention of 358 mA h g−1 at the end of 500 cycles. The superior electrochemical performance of the MC600 can be attributed to the presence of the small amount of MgO, which is believed to provide the anode materials better structural stability during cycling. The claim was further supported by ex-situ TEM analysis of the anode material of a cycled cell (50 cycles).  相似文献   
4.
Since titanium has high affinity for hydrogen and reacts reversibly with hydrogen,the precipitation of titanium hydrides in titanium and its alloys cannot be ignored.Two most common hydride precipitates in α-Ti matrix are γ-hydride and δ-hydride,however their mechanisms for precipitation are still unclear.In the present study,we find that both γ-hydride and δ-hydride phases with different specific orienta-tions were randomly precipitated in the as-received hot forged commercially pure Ti.In addition,a large amount of the titanium hydrides can be introduced into Ti matrix with selective precipitation by using electrochemical treatment.Cs-corrected scanning transmission electron microscopy is used to study the precipitation mechanisms of the two hydrides.It is revealed that the γ-hydride and δ-hydride precipita-tions are both formed through slip + shuffle mechanisms involving a unit of two layers of titanium atoms,but the difference is that the γ-hydride is formed by prismatic slip corresponding to hydrogen occupy-ing the octahedral sites of α-Ti,while the δ-hydride is formed by basal slip corresponding to hydrogen occupying the tetrahedral sites of cα-Ti.  相似文献   
5.
The simultaneous enhancement of magnetic and mechanical properties is desirable but challenging for soft-magnetic materials.A fabrication strategy to meet this requirement is therefore in high demand.Herein,bulk equiatomic dual-phase AlCoFeMnNi high-entropy alloys were fabricated via a magnetic levitation induction melting and casting process followed by annealing at 700-1000℃,and their microstructures as well as mechanical and magnetic properties were investigated.The as-cast alloy possessed a single metastable B2-ordered solid solution that decomposed upon annealing into a dual-phase structure comprising an Al-and Ni-rich body-centered cubic(BCC) matrix and Fe-and Mn-rich face-centered cubic(FCC)precipitates both in the grain interior and along the grain boundaries.The magnetic and mechanical properties were closely related to the relative volume fraction of FCC in the alloy.The FCC volume fraction could be increased by increasing the annealing temperature,thereby offering tunable properties.The optimal annealing temperature for balanced magnetic and mechanical properties was found to be 800℃.The alloy annealed at this temperature had an average BCC grain size of 12±3μm and FCC volume fraction of 41±4%.Correspondingly,the s aturation magnetization and coercivity reached 82.57 Am~2/kg and 433 A/m,respectively.The compressive yield strength and fracture strength were 1022 and 2539 MPa,respectively,and the plasticity was 33%.Owing to its adjustable microstructure and properties,the AlCoFeMnNi alloy has potential for use as a multi-functional soft-magnetic material.  相似文献   
6.
This work aims to study the synthesis conditions effect on the photocatalytic properties of manganese tungstate (MnWO4) for H2 production by the water splitting reaction under visible light irradiation. This is achieved by relating the materials characterization and photocatalytic evaluation of MnWO4 at different synthesis conditions. MnWO4 was synthesized through a precipitation reaction between Mn2+ and (WO4)2- ionic species, while adding oleic acid (OA) as surfactant at two concentrations (0.1% and 1% V) and using three different stirring methods: magnetic stirring (AM), ultrasound (US) and high-shear stirring (UT). Characterization was carried out by TGA, XRD, BET surface area, UV–Vis spectroscopy and FESEM. XRD patterns confirm the wolframite structure of MnWO4. BET surface area increased by using UT stirring. UV–Vis spectroscopy results revealed indirect transition Eg values of ≈2 eV, favorable for the MnWO4 photoactivation under visible light irradiation. During the photocatalytic evaluation, sample 1%-UT produced the highest H2 amount among all samples with a value of 72 μmolH2g−1, which was far higher compared to WO3, which was taken as a reference photocatalyst.  相似文献   
7.
The microstructural evolution and structure–property correlation subjected to deep cryotreatment of tool steel were studied. The results show that the retained austenite continues to transform into martensite almost but not complete at low temperature. The topography of retained austenite exhibits as a nanoscale thin film with a thickness range of 20–60?nm between the martensite laths. The changes of internal friction peaks have been explained well by the coupling model, which indicates that deep cryotreatment is not only removing retained austenite but also promoting the interstitial carbon atoms segregated to nearby dislocations under the shrinking strain energy. In addition, more carbides precipitated from the matrix during tempering in cryotreated samples and were verified by analyses of transmission electron microscopy.  相似文献   
8.
In the present work, effect of Mn doping on hydrolysis rate of low-temperature synthesized metastable α-tricalcium phosphate (α-TCP) was investigated. α-TCP powders containing different amount of Mn2+ ions (0, 0.5 and 1 mol%) were synthesized by wet co-precipitation process, followed by annealing and crystallization of as-precipitated amorphous calcium phosphate at 700 °C. It was demonstrated that the presence of Mn2+ ions significantly retards hydrolysis rate of α-TCP. While pristine α-TCP fully hydrolyzed with a conversion to calcium-deficient hydroxyapatite in 10 h, complete hydrolysis of α-TCP doped with 0.5 and 1 mol% of Mn occurred only after 20 and 35 h, respectively. Initial and final products were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Chemical composition of starting and fully hydrolyzed α-TCP powders was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).  相似文献   
9.
《Advanced Powder Technology》2020,31(6):2257-2266
Supercritical antisolvent (SAS) precipitation technique, although being versatile and ecologically friendly, suffers from the lack of convenient methods for necessary thermodynamic parameters measurement. Recently we have proposed a method for solubility measurement in binary fluids based on an online hyphenation of supercritical antisolvent method and supercritical fluid chromatography (SAS-SFC). In this paper, we demonstrate the applicability of this method to the investigation of both selective precipitation from solution and particle size tuning in SAS using lower dicarboxylic acids as model objects. Measured solubility values adequately reflect selective crystallization from solution. SAS precipitation was observed only for those components, which concentration was above solubility in CO2-solvent mixture as predicted by SAS-SFC method. Also, concentration dependences of particle size plotted in supersaturation coordinates instead of direct concentration in initial solution give additional insight into crystallization behaviour in SAS.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号