首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3736篇
  免费   111篇
  国内免费   70篇
电工技术   41篇
综合类   198篇
化学工业   2115篇
金属工艺   159篇
机械仪表   108篇
建筑科学   28篇
矿业工程   29篇
能源动力   177篇
轻工业   85篇
水利工程   1篇
石油天然气   165篇
武器工业   16篇
无线电   156篇
一般工业技术   345篇
冶金工业   62篇
原子能技术   54篇
自动化技术   178篇
  2024年   1篇
  2023年   30篇
  2022年   52篇
  2021年   58篇
  2020年   56篇
  2019年   60篇
  2018年   48篇
  2017年   76篇
  2016年   69篇
  2015年   77篇
  2014年   123篇
  2013年   176篇
  2012年   137篇
  2011年   198篇
  2010年   144篇
  2009年   193篇
  2008年   206篇
  2007年   218篇
  2006年   203篇
  2005年   155篇
  2004年   180篇
  2003年   148篇
  2002年   164篇
  2001年   161篇
  2000年   148篇
  1999年   147篇
  1998年   143篇
  1997年   105篇
  1996年   110篇
  1995年   90篇
  1994年   59篇
  1993年   51篇
  1992年   36篇
  1991年   25篇
  1990年   21篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
排序方式: 共有3917条查询结果,搜索用时 15 毫秒
1.
Barium strontium alumino silicate (BSAS); (Ba0.6Sr0.4Al2Si2O8) was synthesized through solid state reaction between BaCO3, SrCO3, Al2O3 and SiO2 subjected to wet milling in isopropanol for about 24 h. The sequence of the solid state reaction was studied by subjecting to DG/DTG from room temperature to 1550 °C. The crystallographic phase evolution was confirmed by X-ray diffraction of the powders calcined in the range 1000 to 1300 °C for 2 h. The monoclinic celsian phase obtained at 1300 °C, pelletized through uniaxial pressing was sinterable to 67 to 78% density in the temperature range of 1300 to 1500 °C. The density improved to 75 to 94% after ball milling for 76 h, while ZrO2 addition further improved the density by 2%. The celcian phase of BSAS was dispersed in isopropyl alcohol, milled for about 24 h and spray coated on to plain SiC and mullite precoated SiC substrates. Sintering of coated samples and characterization for weight gain/loss, microstructure, scratch test prove that mullite + BSAS coating is more effective than single layer coating of BSAS on SiC substrates.  相似文献   
2.
A novel series of cleavable alkyltrimethylammonium surfactants with different hydrocarbon chain lengths (C8–16) were synthesized. A carbonate break site inserted between the polar head and the hydrocarbon chain makes these compounds hydrolyzable. The reagents used are renewable, (bio)degradable, or reusable. The hydrolysis of these cleavable surfactants will lead to the generation of fatty alcohols and choline, which is an essential biological nutrient. The surface activities in aqueous solution of the synthesized carbonates fulfill the requirement of being good surfactants. In addition, the cleavable compounds containing n-decyl and n-dodecyl chains showed similar or higher antimicrobial activities when compared to a non-cleavable analog.  相似文献   
3.
Methane tri-reforming combines steam reforming, dry reforming and partial oxidation of methane in a single reactor. The heat generated by the exothermic partial oxidation of methane can be used to supply the energy for the other two endothermic reactions (dry and steam reforming of methane). The thermoneutral condition allows the use of a tri-reformer with a simpler reactor structure since no external heat supply is necessary. Thermodynamic analysis of the thermoneutral reactor was performed using Gibbs free energy minimization approach. Conventional tri-reformers have heat and mass management problems. We developed a novel tri-reformer concept that utilizes proper distribution of O2 gas to the reactor to address the problems. The optimization of the proposed reactor was performed with the objective function of minimizing total annual cost. Maintaining the peak temperatures by adjusting the O2 flow rate at the distribution point along the reactor was shown to provide good load flexibility for the change in methane flow rate.  相似文献   
4.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
5.
The Rh/Ce0·75Zr0·25O2–δ-ƞ-Al2O3/FeCrAl structured catalytic blocks of length 10, 20, and 60 mm were prepared and tested in the reactions of steam and autothermal reforming of n-hexadecane. It was found in a series of experiments on hexadecane steam reforming with the catalyst heating solely through the reactor wall that the complete conversion of hexadecane at a furnace temperature below 750 °C was not achieved even at GHSV = 10,000 h−1. Under these conditions, the formation of carbon on the catalyst surface was observed. At the reactor wall temperature of 800 °C, the complete conversion of hexadecane was achieved even in the 10 mm long catalytic block (GHSV = 60,000 h−1), accompanied by the formation of various intermediate light hydrocarbons. To achieve complete conversion of these intermediate compounds (mainly 1-alkenes), it is necessary to carry out the steam reforming reaction at GHSV = 10,000 h−1. At hexadecane autothermal reforming, heat is supplied to the reaction zone by exothermic oxidation reaction, which makes this process more efficient. In experiments with the use of additional external heat supply through the reactor wall, complete conversion of hexadecane occurred at GHSV = 120,000 h−1. To convert all by-products (mainly 1-alkenes) and achieve a nearly thermodynamic equilibrium distribution of the main reaction products (H2, CO, CO2), the reaction should be carried out at GHSV = 20,000 h−1. Without external heat supply, hexadecane conversion decreased, while the content of light hydrocarbons in the reaction products increased. An increase in the inlet amount of oxygen helps to compensate the heat losses in the reactor and to increase the efficiency of hexadecane autothermal reforming. The performed experiments allow better understanding of the processes which occur during the steam and autothermal reforming of diesel.  相似文献   
6.
Photocatalysts often show excellent performances on the basis of their surface state of exposed faces with high reactivity, but unfortunately surfaces of this type are usually concealed into the interior of crystals for their high surface energy. We report here a possibility that for fluorine-terminated surfaces of monoclinic ZrO2, these higher-energy surfaces could be retained and exposed. Urchin-like ZrO2 hollow microspheres (UZHS) composed of nanoribbons with exposed (010) facets are obtained through a fluoride mediately solvothermal method. We prove the stabilization effect of fluorine adsorption on (010) facets by density functional theory calculations. More interestingly, UZHS exhibit tunable photocatalytic selectivity in dye degradation. The fluorinated UZHS exhibit good performances both on decomposing Congo red (CR) and methylene blue, while the surface-modified UZHS by calcination only favor decomposition of CR.  相似文献   
7.
The influence of adding 10, 20 and 30% molar ratio of silicon carbide (SiC) separately to a composite of wollastonite (W) with a fixed content of 10%Fe2O3 prepared by wet precipitation method was studied. The crystal structure of the annealed composite powders was inspected by X-ray diffraction (XRD); revealing multi-phase structure. The highest estimated crystallite size investigated by Scherrer equation of W, SiC, WFe:SiC10, WFe:SiC20 and WFe:SiC30 were 53.89, 54.6, 56.3, 48.5 and 54.6 nm respectively; demonstrating the formation of nanocomposites. Particles shape, size and crystallinity of the samples were studied using high resolution transmission electron microscope (HR-TEM). The band gap Eg values of the nanocomposites increased with SiC content having an intermediate value that lies between that of γ-Fe2O3 (maghemite) and SiC. Ferromagnetic and paramagnetic contributions were observed in the magnetic hysteresis loops for the composites. This study highlighted that the coercive field (Hci) of the composites improved with increasing the SiC content. The innovative wollastonite/Fe2O3/SiC with amended magnetic properties elicited attention due to their promising application in bone filler and industrial purposes.  相似文献   
8.
《Ceramics International》2022,48(14):19513-19526
Comprehensive control of processing techniques is primordial when fine-tuning the morphological features of titanium dioxide nanotube arrays (TNTs). This systematic review and meta-analysis compiled articles published from 2007 to date on the synthesis and growth mechanism of nanotubes fabricated via electrochemical anodization and evaluated the potential relationships between anodizing conditions and the resulting structures. Studies were gathered from the Science Direct online database, screened according to predefined criteria, and evaluated for their eligibility. Ninety-nine studies were assessed in the meta-analysis, 87 of them on tube length, 80 on tube diameter, and 33 on wall thickness. Multiple linear regression was performed to test if anodization parameters significantly predicted the resulting morphology of TiO2 nanotubular structures. Overall regression for the three responses was statistically significant (length: R2 = 0.487, p < 0.001; diameter: R2 = 0.899, p < 0.001; wall thickness: R2 = 0.792, p < 0.001). Applied potential was one of the main effects predicting all three responses (p < 0.001 in every model). Other important main predictors were anodizing time for tube length (p < 0.001), water percentage for tube diameter (p < 0.001) and ammonium fluoride (NH4F) concentration for wall thickness (p < 0.001).  相似文献   
9.
Photocatalytic water splitting for hydrogen production is a promising technology for the conversion of solar light to clean energy. In this perspective, several semiconductors have been under investigation, but they show less efficiency, selectivity and stability for hydrogen production. Recently, perovskites are most demanding due to their exceptional characteristics such as controlled structure and morphology, adjustable band structure, controlled valence state, adjustable oxidation state and visible light response. This review highlights structural classification of perovskites and band engineering for solar energy assisted photocatalytic hydrogen production. In the main stream, overview and fundamentals of perovskite materials for selective solar to hydrogen conversion are presented. The structural modification and band alteration to stimulate quantum efficiency and stability are specifically demonstrated. Photoactivity enhancement through metals, noble metals, non-metals doping, oxygen vacancies and fermi level adjustments are also deliberated. The role of perovskites with binary semiconductors towards hydrogen production has also been discussed. Up conversion effect of doping luminescent agents (Er, Ho, Eu, Nd) for improved photocatalytic activity by band gap narrowing is also deliberated. Various conventional and non-conventional synthesis methods for perovskites including solid-state, hydrothermal, sol-gel, co-precipitation, spray-freeze drying, microwave assisted, spray pyrolysis, low temperature combustion, pulse laser deposition and wet chemical method for enhanced photocatalytic activity are also demonstrated in this work. Finally, the key challenges and future directions for sustainable energy systems are also included.  相似文献   
10.
Catalytic autothermal reforming (ATR) of a number of hydrocarbon fuels was studied over composite RhCZ-S catalyst (0.24 wt% Rh supported on structured Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl carrier). Iso-octane and n-hexadecane as model compounds of gasoline and diesel fuel, respectively, showed similar properties in ATR process, indicating weak influence of molecular weight and branching degree of liquid alkanes on catalyst performance. Biodiesel ATR characteristics were similar to those of n-hexadecane ATR, as the utilized biodiesel predominantly contained alkanes, being products of fatty acid tail fragments hydrogenation. Even in the case of gasoline ATR, sufficient amount of monoaromatics did not influence a lot on the catalyst performance. Diesel ATR showed rather different situation: the catalyst tended to lose activity due to coking, and incomplete fuel conversion was observed. Analysis of unreacted fuel revealed bi- and polyaromatic compounds (mainly naphtalenes and antracenes) were difficult to convert.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号