首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   29篇
  国内免费   20篇
电工技术   6篇
综合类   35篇
化学工业   285篇
金属工艺   52篇
机械仪表   11篇
建筑科学   5篇
矿业工程   106篇
能源动力   147篇
轻工业   7篇
石油天然气   7篇
无线电   32篇
一般工业技术   140篇
冶金工业   92篇
原子能技术   11篇
自动化技术   9篇
  2023年   14篇
  2022年   12篇
  2021年   29篇
  2020年   42篇
  2019年   23篇
  2018年   33篇
  2017年   33篇
  2016年   20篇
  2015年   13篇
  2014年   42篇
  2013年   39篇
  2012年   34篇
  2011年   84篇
  2010年   44篇
  2009年   63篇
  2008年   48篇
  2007年   55篇
  2006年   45篇
  2005年   20篇
  2004年   31篇
  2003年   43篇
  2002年   24篇
  2001年   25篇
  2000年   17篇
  1999年   19篇
  1998年   11篇
  1997年   9篇
  1996年   14篇
  1995年   14篇
  1994年   5篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有945条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(19):27479-27486
Threshold switching (TS) devices have evolved as one of the most promising elements in memory circuit due to their important significance in suppressing crosstalk current in the crisscross array structure. However, the issue of high threshold voltage (Vth) and low stability still restricts their potential applications. Herein, the vanadium oxide (VOx) films deposited by the pulsed laser deposition (PLD) method are adopted as the switching layer to construct the TS devices. The TS devices with Pt/VOx/Pt/PI structure exhibit non-polar, electroforming-free, and volatile TS characteristics with an ultralow Vth (+0.48 V/−0.48 V). Besides that, the TS devices also demonstrates high stability, without obviously performance degradations after 350 cycles of endurance measurements. Additionally, the transition mechanism is mainly attributed to the synergistic effect of metal-insulator transition of VO2 and oxygen vacancies. Furthermore, the nonvolatile bipolar resistance switching behaviors can be obtained by changing oxygen pressure during the deposition process for switching films. This work demonstrates that vanadium oxide film is a good candidate as switching layer for applications in the TS devices and opens an avenue for future electronics.  相似文献   
2.
《Ceramics International》2021,47(20):28203-28209
Vanadium carbide (VC) as excellent ceramic and functional material is usually prepared by carbothermal reduction of V2O5 which must be extracted from a typical V slag by complex processes. Pollutants, such as ammonia-nitrogen wastewater, NH3 and CO2 are inevitably discharged. A novel and green method for VC preparation was proposed by one-step co-electrolysis of soluble NaVO3 and CO2 in molten salt. It was found that VC with high purity was easily obtained by reducing electrolysis temperature and CO2 flow rate to 600 °C and 10 mL min−1 at 3.0 V. Besides VC with particles and layered stacking structure in products, a small amount of carbon and oxygen elements existed. The atomic percentage contents of C, V, and O elements in VC were about 50.0%, 44.5% and 3.8%, respectively. During electrolysis, CO32− and VO3 was reduced at about −0.55 V (vs. Ag/AgCl) and −1.38 V (vs. Ag/AgCl), respectively. CO32− ions were more easily reduced than VO3, and was firstly reduced to CO22− and then converted to C. Then, VC was prepared by two routes from CO2 and NaVO3. One route is that VO3 ions are firstly electroreduced to VO2 ions and then are further electroreduced to VC with C. Another route is that VO3 ions are electroreduced to V which in-situ reacted with C to VC. Both VO3 and CO32− ions are electroreduced by two-step process. In final, VC is in-situ deposited on cathode. It provides a novel and green way to prepare VC and also achieves the high value-added utilization of vanadium slag and CO2.  相似文献   
3.
Biomaterials having photoluminescent properties play a crucial role in real-time bioimaging after in vivo implantation. In this study, photoluminescence properties and decay characteristics of the borate-based 13–93B3 glasses containing different concentrations of cerium, gallium, and vanadium oxides were investigated for biomedical applications. The borate-based bioactive glass powders were prepared using melt-quench technique and size reduction was performed through planetary ball milling. Bioactivity of the prepared powders was investigated in simulated body fluid at 37 °C under static conditions. The photoluminescent properties and decay kinetics of the as-prepared and the SBF-treated bioactive glass powders were analyzed by steady-state and time-resolved photoluminescence measurements. Results revealed that the cerium activated glasses exhibited an intense luminescence centered at 538 nm. Broad-band emission of the gallium and vanadium doped samples was centered at 440 and 572 nm, respectively. All of the SBF-treated glasses exhibited enhanced lifetimes and bi-exponential decays both in nanosecond and microsecond regime measurements. It was concluded that depending on the dopant concentration, bioactive glass particles prepared in the study showed remarkable photoluminescence and have potential to be used in bioimaging applications.  相似文献   
4.
A series of novel branched sulfonated polyimide (bSPI-x) membranes with 8% branched degree are developed for application in vanadium redox flow battery (VRFB). The sulfonation degrees of bSPI-x membranes are precisely regulated for obtaining excellent comprehensive performance. Among all bSPI-x membranes, the bSPI-50 membrane shows strong vanadium permeability resistance, which is as 8 times as that of commercial Nafion 212 membrane. At the same time, the bSPI-50 membrane has remarkable proton selectivity, which is four times as high as that of Nafion 212 membrane. The bSPI-50 membrane possesses slower self-discharge speed than Nafion 212 membrane. Furthermore, the bSPI-50 membrane achieves stable VRFB efficiencies during 200-time charge-discharge cycles at 120–180 mA cm?2. Simultaneously, the bSPI-50 membrane exhibits excellent capacity retention compared with Nafion 212 membrane. All results imply that the bSPI-50 membrane possesses good application prospect as a promising alternative separator of VRFB.  相似文献   
5.
The rational design of highly effective and low-cost catalysts for oxygen evolution reaction (OER) is of prime importance for the development of water splitting. However, the activity of electrocatalysts still needs enhancement to satisfy the practical application. Herein, we report Co nanoparticles grafted on vanadium nitride (VN) surface via in situ phase separation method by nitriding Co2V2O7 precursor. Benefiting the advantages of abundant active sites of Co, high conductivity and corrosion resistance of VN, the Co/VN achieves incredibly high activity and durability for OER with a low overpotential of 320 mV at a current density of 10 mV cm?2 with a small Tafel slope of 50.4 mV dec?1 and long-term stability. In addition, the in situ Raman further reveals the synergistic effect of Co and VN. Significantly, this study may enrich our knowledge and it can be extended to prepare other interconnected framework structures for the development of OER catalysts.  相似文献   
6.
A series of V-promoted hydrotalcite-derived nickel catalysts (1.0, 2.0, and 4.0 wt%) were tested in CO2 methanation. Ni–I–V2.0 with 2.0 wt% vanadium loading showed the highest catalytic activity, achieving 74.7% of CO2 conversion and 100% of CH4 selectivity at 300 °C. XRD and XANES analyses showed that the smallest Ni0 particles in Ni–I–V2.0 were consistent with the improved textural features observed for this catalyst. Moreover, CO2-TPD revealed the highest sum of weak and medium basic sites in Ni–I–V2.0 that can positively influence catalytic behavior. For the studied catalysts, a clear correlation was demonstrated between the catalytic activity and specific surface area, as well as the basic properties.  相似文献   
7.
Vanadium dioxide (VO2) is a promising thermally induced phase transition material because of the abrupt changes in electrical and optical properties. However, the high phase transition temperature of VO2 and its unspecified modulation relationship need to be resolved urgently. Herein, we proposed a simple and precise regulation criterion for VO2 materials based on size-dependent lattice distortion rate and Born theory. The results indicated that the application of a tensile stress changed the elastic properties of the VO2, which promoted VO2 phase transition, and regulated the phase transition temperature. Moreover, the specific modulation relationship between the stress and phase transition temperature of VO2 was confirmed experimentally. These results show that our criterion provides theoretical guidance to regulate VO2 thermally induced phase transition materials.  相似文献   
8.
Electrospun carbon fibers are featured with abundant electroactive sites but large mass transport resistances as the electrodes for vanadium redox flow battery. To lower mass transport resistances while maintaining large specific areas, electrospun carbon fibers with different structural properties, including pore size and pore distribution, are prepared by varying precursor concentrations. Increasing the polyacrylonitrile concentration from 9 wt% to 18 wt% results in carbonized fibers with an average fiber diameter ranging from 0.28 μm to 1.82 μm. The median pore diameter, in the meantime, almost linearly increases from 1.32 μm to 9.05 μm while maintaining the porosity of higher than 82%. The subsequent electroactivity evaluation and full battery testing demonstrate that the mass transport of vanadium ions through the electrode with larger fiber diameters are significantly improved but not scarifying the electrochemical activity. It is shown that the flow battery with these electrodes obtains an energy efficiency of 79% and electrolyte utilization of 74% at 300 mA cm−2. Hence, all these results eliminate the concern of mass transport when applying electrospun carbon fibers as the electrodes for redox flow batteries and guide the future development of electrospun carbon fibers.  相似文献   
9.
Transport phenomena are investigated which are involved in the electrokinetic remediation process used for removing vanadium from deactivated catalysts from oil catalytic cracking that are currently allotted to cement plants and class-I landfills. Variables such as the concentration of electrolyte, electric potential, and applied electric current were evaluated in order to determine the effects produced by electroosmosis, diffusion, hydraulic gradient, and electromigration on the removal of vanadium from the catalyst. It was observed that migration is the most relevant phenomenon in the remediation tests, and for the best remediation condition, the migratory flow accounted for about 87 % of the vanadium removal.  相似文献   
10.
High ion selectivity and mechanical strength are critical properties for proton exchange membranes in vanadium redox flow batteries. In this work, a novel sulfonated poly(ether sulfone) hybrid membrane reinforced by core-shell structured nanocellulose (CNC-SPES) is prepared to obtain a robust and high-performance proton exchange membrane for vanadium redox flow batteries. Membrane morphology, proton conductivity, vanadium permeability and tensile strength are investigated. Single cell tests at a range of 40–140 mA cm−2 are carried out. The performance of the sulfonated poly(ether sulfone) membrane reinforced by pristine nanocellulose (NC-SPES) and Nafion® 212 membranes are also studied for comparison. The results show that, with the incorporation of silica-encapsulated nanocellulose, the membrane exhibits outstanding mechanical strength of 54.5 MPa and high energy efficiency above 82% at 100 mA cm−2, which is stable during 200 charge-discharge cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号