首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   7篇
电工技术   2篇
化学工业   112篇
金属工艺   1篇
机械仪表   2篇
建筑科学   13篇
能源动力   221篇
轻工业   4篇
石油天然气   2篇
一般工业技术   3篇
自动化技术   7篇
  2023年   3篇
  2022年   5篇
  2021年   11篇
  2020年   16篇
  2019年   13篇
  2018年   14篇
  2017年   4篇
  2016年   27篇
  2015年   17篇
  2014年   28篇
  2013年   24篇
  2012年   10篇
  2011年   87篇
  2010年   39篇
  2009年   22篇
  2008年   17篇
  2007年   9篇
  2006年   4篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
1.
An alternative for reducing emissions from marine fuel is to blend bio-oil from lignocellulose non-edible feedstocks to diesel fossil fuels. Phase diagrams of the ternary systems were built to represent the transition from heterogeneous regions to homogeneous regions. Four homogeneous blends of bio-oil of eucalyptus-bioethanol-marine gasoil were experimentally characterized with respect to the most important fuel parameters for marine engines: water content, flash point, low heating value, viscosity, and acidity. Blends with closer properties to marine gasoil replacement, lower costs, and environmental impacts should be tested for large engines.  相似文献   
2.
The genetic diversity of 5 populations of Jatropha curcas L. (Euphorbiaceae), a species cultivated in tropical countries and used in biodiesel production, was analyzed by amplified fragment length polymorphism (AFLP). Plants from distinct populations found in the State of São Paulo, Brazil, had their genetic diversity characterized by using three primer combinations. The number of polymorphic bands obtained reached 184 and the base pair length of bands ranged from 75 to 350, with average PIC values of 0.418. Accessions from the Aguas de Santa Barbara population presented the highest percentage of polymorphic loci (89.76%), followed by the populations of Catanduva (84.24%), Jales (80.98%), Jurucê (78.80%) and Taquaritinga (70.65%). Plants collected from the populations of Taquaritinga and Jales presented the smallest and highest genetic diversities, respectively, measured by using both Nei's genetic variability index (h = 0.2242 and 0.2973) and Shannon's index (I = 0.3359 and 0.4319). The results obtained indicated that 73.1% of genetic variability corresponds to intrapopulational variation and 26.8% to variation among populations. The clustering dendrogram using Jacquard showed four clusters. Three clusters with low genetic diversity grouped most of individuals collected in distinct regions (63.3% JU, 47.0% JA and 82.5% TA) and the fourth with the higher genetic diversity was composed with basically individuals collected in CA and AS, but it also had samples collected in JU, JA and TA, where it is possible to select individuals to be included in breeding programs.  相似文献   
3.
This article presents experimental results for spouted bed drying of sawdust, carried out in a full-scale as well as in a laboratory-scale dryer using air as well as steam as drying media. The aim is to present design parameters for a spouted-bed sawdust dryer that can be used by the industry in designing full-scale dryers. A hydrodynamically stable spouted jet spouted bed was obtained. The heat transfer characteristics of the bed were represented in terms of a volumetric heat transfer coefficient (VHC). When sawdust is dried in a spouted bed, the mean VHC is increasing up to fiber saturation level (20-25% wb) from 40 to 110 W/m3 K. The VHC decreases with the residence time and with an increased static bed height. Gas temperature profiles are also presented for the bottom part of the drying chamber.  相似文献   
4.
Biofuel cells (BFCs) are the devices made to transform the chemical energy of organic matter to electrical energy utilizing metabolic reactions occurring in microorganisms during degradation of organic contaminants. In spite of having many applications such as waste water treatment, biosensors and portable uses of BFCs, promoting the uses of BFCs is very challenging because of short life-time and low-power density. Most of the BFC developed till date is only capable to fulfill energy needs of biomedical short-term implanted devices. Use of materials with nano dimensions in the construction of BFCs has been studied extensively and reported as a worthwhile strategy to increase its efficiency. Usually, it is difficult to achieve efficient electron transfer on planar electrode from biocatalyst due to its non-specific orientational the interface. Nonmaterials provide close wiring for the electron transfer between biocatalyst and electrode. Use of various nanomaterials is the most effective way to decrease the gap between active sites (electron producing area)deep inside the enzyme or proteins and the electrodes to achieve better electron transfer. Also, various nanomaterials are utilized to improve the membrane materials for better electron barrier. Many carbon nanostructures, conducting polymers, metal and metal oxides are promising nonmaterials to enhance the current output from BFC. This review highlights recent progress registered in the development of various nanomaterials for construction of electrode and membranes of biofuel cells for better efficiency. It also emphasized the utilization of different metallic nanomaterials, inorganic nanomaterials, conducting polymer-based nanomaterials and carbon-based nanomaterials such as graphene, fullerenes, and carbon nanotubes.  相似文献   
5.
Two different sugar yield definitions (cellulose-based and biomass-based) were used in reported studies investigating the relationship between biomass particle size and enzymatic hydrolysis sugar yield. It is noticed that these reported relationships are not consistent if sugar yield is defined differently. The literature does not contain any reports on the effects of sugar yield definition on the relationship between biomass particle size and enzymatic hydrolysis sugar yield. This paper presents a consistency mapping to show under what conditions the relationships are consistent (or inconsistent) when these two definitions are used. The application of this mapping is illustrated via an experimental study with poplar wood biomass on the relationship between biomass particle size and enzymatic hydrolysis sugar yield using both sugar yield definitions. The application of this mapping is also illustrated via data reported in the literature. Not limited to particle size, this mapping is applicable to investigations of the relationships between a variety of parameters (biomass type, pretreatment condition, etc.) and enzymatic hydrolysis sugar yield.  相似文献   
6.
Upgrading of pyrolysis bio-oil by a novel catalytic hydrotreating process, including hydrodeoxygenation (HDO) and hydrodenitrogenation (HDN) was found as an effective technical method for the improvement of biofuel characteristics. In this study, for the first time, the performance of a novel meso-microporous composite material, HMS-ZSM-5, as a support on the catalytic activity of NiMo-based catalysts in the bio-oil hydrotreating was evaluated. The experiments were carried out in a flow fixed-bed reactor at the temperature range of 300–360 °C, 30 bar pressure, and LHSV = 4 h-1. Also, the results were and compared with those of HMS, ZSM-5, and γ-Al2O3 supports. For all catalysts, the increase in temperature resulted in the enhancement of HDO and HDN reactions efficiency. NiMo/HMS-ZSM-5 possessed a high acid property which contributed to the removal of oxygen and nitrogen from bio-oil, with the conversion of 84.10% and 69.60%, respectively. Therefore, the novel catalyst of this study represented much superior upgrading performances compared with those of stand-alone NiMo/HMS and NiMo/ZSM-5 catalysts and also the conventional catalyst of NiMo/γ-Al2O3.  相似文献   
7.
Heterocyst-forming cells of the cyanobacterium Anabaena sp. strain PCC 7120 ΔHup, lacking an uptake hydrogenase, photobiologically produce H2 by nitrogenase. Under N2-rich atmosphere, the nitrogenase activity declines in a rather short time due to the sufficiency of combined nitrogen. From the parental ΔHup strain, site-directed double-crossover variants, dc-Q193S and dc-R284H, were created with amino acid substitutions presumed to be located in the vicinity of the FeMo-cofactor of nitrogenase. Unlike the case for the ΔHup strain, H2 production activities of the variants were not decreased by the presence of high concentrations of N2 and they continuously produced H2 over 21 days with occasional headspace gas replacement. This property of N2 insensitivity is a potentially useful strategy for reducing the cost of the culture gas in future practical applications of sustainable biofuel production. This Anabaena strain has only the Mo-containing nitrogenase which reduces acetylene to ethylene, but the dc-Q193S variant also produced ethane at low but measurable rates along with greater rates of ethylene production.  相似文献   
8.
Biogas production often competes with food and feed production for the raw materials and cropland required for cultivation. Common reed offers an alternative source of biomass for biogas production, alleviating this conflict. Effective microbiological conversion of this type of lignocellulosic biomass requires a pretreatment process. This study aims to determine the specific methane yields of steam-exploded reed as well as to identify how pretreatment conditions influence its physico-chemical characteristics. For this purpose, reed was pretreated with steam explosion at severity factors ranging from 2.47 to 4.83. The effects on methane yields were analyzed in batch experiments. Scanning electron microscopy (SEM) images were captured and detailed chemical analyses of the substrates carried out. Results show that the digestibility of reed biomass improved remarkably after pretreatment. Compared to the untreated sample, steam explosion increased the specific methane yield up to 89% after pretreatment at 200 °C for 15 min. However, methane yield decreased under harsher conditions, which may be due to the formation of degradation compounds during the pretreatment.  相似文献   
9.
The increasing importance of sustainability in energy production has led to a global commitment to the use of fuels derived from renewable biological sources, such as biodiesel produced from plant crops or biomass residues, that do not compete with human food for their production. For a biofuel to be considered biodiesel, it must satisfy the specifications described in the UNE 14214, with the UNE-EN 14103 referring to the determination of fatty acid methyl ester content. This standard applies gas chromatography as an analytical technique. Gas chromatography is a widely used technique in the analysis of methyl ester although it has a number of drawbacks such as: long analysis times, a high consumption of high-quality gases and internal standards, does not allow the analysis of different compounds with the same column, etc. From an industrial production point of view, is necessary to know the fatty acid methyl ester content in biodiesel samples quickly. This paper studies the development of an analytical method using Fourier transform infrared spectroscopy (FTIR) as alternative to gas chromatography (GC), since it is a simple, rapid, and precise analytical technique to quantify fatty acid methyl ester content in biofuel samples.  相似文献   
10.
Using PDMS (polydimethylsiloxane) as a basic polymeric matrix to the preparation of ethanol-permselective pervaporation membranes is a vibrant field of research. In this paper, a detailed study of the effects of the molecular weight of PDMS precursors and the content of the TEOS (tetraethyl orthosilicate) crosslinker on the degree of swelling in ethanol and ethanol contact angle is reported. Five PDMS precursors with molecular weights of 26.6 K, 35.5 K, 50.2 K, 71.7 K, and 110.4 K, and five crosslinking contents (1 wt%, 2 wt%, 5 wt%, 10 wt%, and 15 wt%) were chosen to prepare twenty-five PDMS networks. Considering only the maximum tensile strength of the networks, the optimum molecular weight of the precursor was found to be 35.5 K and the optimum crosslinker content was 5 wt%. The average Young’s modulus of the PDMS network prepared under these conditions reached 0.63 MPa after using toluene to extract the network. Some uncrosslinked precursors always occur in the networks, and have some influence on the molecular weight of the precursors and the crosslinker content that is used. It was found that the content of the uncrosslinked precursors has direct effect on the contact angle of ethanol sessile drops at the surface of the extracted PDMS networks, and higher extraction corresponded to a smaller ethanol contact angle. A combined parameter (S), defined as the quotient of the extraction amount (AE) and the tensile elastic modulus (EY), gives a good linear relationship with the increase in weight of networks swelled in ethanol. This means that the degree of equilibrium swelling of the networks is simultaneously strongly influenced by the tensile modulus and the content of the uncrosslinked precursors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号