首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   3篇
  国内免费   2篇
化学工业   40篇
金属工艺   2篇
机械仪表   7篇
建筑科学   4篇
能源动力   15篇
轻工业   34篇
无线电   7篇
一般工业技术   20篇
自动化技术   2篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   9篇
  2011年   9篇
  2010年   11篇
  2009年   14篇
  2008年   8篇
  2007年   16篇
  2006年   2篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
排序方式: 共有131条查询结果,搜索用时 26 毫秒
1.
Nano-particulate copper and indium metal layers of 1-2 μm have been deposited by non-vacuum techniques such as doctor blade, screen printing and electrospray using alcoholic suspension pastes. Electrospray showed a high efficiency of material usage and yielded the most uniform morphology. The metal precursor layers were subjected to a thermal treatment (500-600 °C) in selenium vapor to convert the porous metal layers into CuInSe2 compound layers. The chemical conversion, investigated by X-ray diffraction, showed the presence of the In2O3 impurity phase in the precursor as well as in the selenized layers.  相似文献   
2.
Tea is the second most consumed beverage in the world and its consumption has been associated with numerous potential health benefits. Factors such as fermentation methods, geographical origin and season can affect the primary and secondary metabolite composition of tea. In this study, a hydrophilic interaction liquid chromatography (HILIC) method coupled to high resolution mass spectrometry in both positive and negative ionisation modes was developed and optimised. The method when combined with principal component analysis to analyse three different types of tea, successfully distinguished samples into different categories, and provided evidence of the metabolites which differed between them. The accurate mass and high resolution attributes of the mass spectrometric data were utilised and relative quantification data were extracted post-data acquisition on 18 amino acids, showing significant differences in amino acid concentrations between tea types and countries. This study highlights the potential of HILIC chromatography combined with non-targeted mass spectrometric methods to provide a comprehensive understanding of polar metabolites in plant extracts.  相似文献   
3.
A simple, fast and direct method was developed for the qualitative analysis of phenolic constituents from infusions of Mapuche medicinal plants. Teas made of Linum chamissonis Schiede, Quinchamalium chilensis Mol., Adesmia emarginata Clos. and Escallonia illinita K. Presl. were analysed by high-performance liquid chromatography with diode array detector (HPLC-DAD) and electrospray mass spectrometry (ESI-MS). This technique allowed for the first time the tentative identification of 16 phenolic compounds in E. illinita, 27 in Q. chilensis, 10 in L. chamissonis and 19 in A. emarginata. The compounds were mainly phenolic acids, flavonoid glycosides, anthocyanins and tannins. The total phenolic and flavonoid content of the infusions was assessed as well as the free radical scavenging capacity measured by the bleaching of a solution of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. From the four species, Q. chilensis exhibited the strongest antioxidant activity with highest total phenolic and flavonoid content.  相似文献   
4.
Abstract

Single-walled carbon nanotubes (SWCNT) prepared by a DC-Arc-Discharge and purified by a hydrothermal treatment followed by several steps of procedures including heating, burning, extracting and acid-washing are investigated by a conventional STM technique morphologically and spectroscopically. The electical resistivities of compacted pellets (mats) of SWCNT are measured as a function of temperature in the range from the room-temperature to 1.5K. The behaviors seems to be essentially originated in the metallic nature of individual SWCNT.  相似文献   
5.
Cobalt oxide thin films were fabricated by means of electrospray deposition. The obtained films were characterized by Raman spectroscopy, X-ray diffraction and Scanning electron microscopy. The solution that was used gave the Co3O4 phase at different growth temperatures. The best granular surfaces were obtained at 250 °C as verified by all characterization techniques, while flaky surfaces were obtained at higher temperatures. The surface morphology is mostly granular except for high temperatures where the cobalt oxide is formed as flakes instead of grains.  相似文献   
6.
In recent years,high-entropy alloys(HEAs) have received more and more attention due to their unique microstructure and properties.Several researchers have reported that some ball-milled(BM) HEAs powders possess prominent decolorization performance for azo dyes.Three kinds of Co-free HEA powders(AlCrFeMn,AlCrFeNi and FeCrNiMn) have been synthesized by ball milling in this work,of which AlCrFeMn shows the best decolorization efficiency for DB6 aqueous solution.However,at this time,the BM HEAs are in powder state and not easy to be reused,so the loss rate of the powders is high during the reaction.Sometimes,the reaction between reacted the powders and the dye solution is too fast to control.While,in order to solve these problems,this work proposes to immobilize bare BM AlCrFeMn HEA powders in calcium alginate beads(CAB s) by electrospray and microfluidics.Through four cycles of reaction,the loss rate of the AlCrFeMn powders can be reduced from 40 to 5 wt% if the powders are immobilized by CABs with an average diameter of 0.55 mm obtained at the DC voltage of 30 kV.In addition,in the four cycles of experiment,the AlCrFeMn HEA-CABs with an average diameter of0.55 mm shows better stability and easier separation than that of the bare AlCrFeMn powders.These findings provide new ideas for HEAs to decolorize azo dyes and are of great significance for protecting freshwater resources.  相似文献   
7.
By electrospraying solvent dispersed carbon nanotubes (CNTs) with a binder onto carbon fibre (CF), hybrid structures, with an end aim to improve interfacial bonding in composites, were formed. The electrospray parameters controlling the modification of the CNT morphologies were studied. High-speed camera observations found applied voltage was critical for determining spray mode development. Electric field simulations revealed a concentrated electric field region around each fibre. Both voltage and distance played an important role in determining the CNT morphology by mediating anchoring strength and electric field force. The forming mechanism investigation of different surface morphologies suggested that binder with appropriate wetness gives freedom to the CNTs, allowing them to orientate radially from the CF surface. Linear density (LD) measurements and thermogravimetric analysis revealed that a 10 min coating increased the LD of a single CF filament by up to 31.7% while a 1 h treatment increased fibre bundle mass by 1%.  相似文献   
8.
In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were conducted to examine the chemical composition, phase structure, and surface morphology of the sprayed TiO2 film. After calcined at 450℃ in air atmosphere for 2 h, mesoporous TiO2 nano-spheres clusters were formed on the surface of silicon wafer and the average size of nano-spheres was 250 nm. Ti presented as Ti 4+ oxidation state in TiO2 film, and the TiO2 film exhibited the anatase phase. The sprayed porous TiO2 films were employed as photocatalyst to degrade organic phosphorus in water samples. Compared with the TiO2 film prepared by Sol-Gel spin-coating method, the porous TiO2 film deposited by electrospray combined sol-gel method showed higher photocatalytic activity.  相似文献   
9.
A cone-shaped MS inlet and on-line electrochemistry (EC) were used to enhance the ionization efficiency in electrospray ionization mass spectrometry (ESI MS) of purine bases. A pathway of positive ion mode ESI may involve oxidation of purine bases, guanine, adenine, xanthine and hypoxanthine, by 1e, 1H+ processes. The electrospray process generates dimers of purine bases that are detected in ESI MS as protonated ions, except for xanthine, for which a protonated radical dimer is detected. Thus electrochemical oxidation of purine bases during ESI may generate reactive radicals that can subsequently dimerize. Dimer formation is facilitated in ESI MS when the carrier solution pH is high. The positive ion mode ESI MS ionization is consistent with the reactivity of the bases toward oxidation. Furthermore, the formation of the protonated ions, and Na+ and K+ adducts of the bases, expected in positive ion ESI MS, are observed. In addition, unusual H-bonding of purine bases guanine and xanthine is confirmed by ESI MS. Application of low EC voltage to the on-line EC cell in EC/ESI MS improves the sensitivity and correlates with the decrease of the intensity of the dimers, possibly as a result of their further oxidation.  相似文献   
10.
Colleen E. Rostad 《Fuel》2010,89(5):997-2150
Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号