首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   5篇
  国内免费   22篇
电工技术   1篇
综合类   17篇
化学工业   540篇
金属工艺   33篇
机械仪表   5篇
建筑科学   47篇
矿业工程   8篇
能源动力   424篇
轻工业   7篇
水利工程   1篇
石油天然气   6篇
无线电   82篇
一般工业技术   234篇
冶金工业   21篇
原子能技术   1篇
自动化技术   1篇
  2024年   3篇
  2023年   84篇
  2022年   119篇
  2021年   119篇
  2020年   99篇
  2019年   86篇
  2018年   58篇
  2017年   55篇
  2016年   52篇
  2015年   25篇
  2014年   100篇
  2013年   60篇
  2012年   52篇
  2011年   84篇
  2010年   63篇
  2009年   79篇
  2008年   90篇
  2007年   39篇
  2006年   25篇
  2005年   36篇
  2004年   25篇
  2003年   22篇
  2002年   15篇
  2001年   17篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1991年   1篇
排序方式: 共有1428条查询结果,搜索用时 15 毫秒
1.
In this work, we designed a magnetically-separable Fe3O4-rGO-ZnO ternary catalyst, ZnO anchored on the surface of reduced graphene oxide (rGO)-wrapped Fe3O4 magnetic nanoparticles, where rGO, as an effective interlayer, can enhance the synergistic effect between ZnO and Fe3O4. The effects of three operational parameters, namely irradiation time, hydrogen peroxide dosage, and the catalyst dosage, on the photo-Fenton degradation of methylene blue and methyl orange were investigated. The results showed that the Fe3O4-rGO-ZnO had great potential for the destruction of organic compounds from wastewater using the Fenton chemical oxidation method at neutral pH. Repeatability of the photocatalytic activity after 5 cycles showed only a tiny drop in the catalytic efficiency.  相似文献   
2.
The extensive occurrence of textile and pharmaceutical contaminants and their metabolites in water systems has posed significant concerns regarding their possible threat to human health and the environmental system. As a result, herein ZnFe2O4 nanoparticles were synthesized through the use of Monsonia burkeana plant extract. The synthesized nanoparticles were characterized using XRD, FTIR, UV–vis, SEM, EDS, TGA, BET, PL, EPR and VSM. XRD showed that the crystalline structure of ZnFe2O4 nanoparticles with a calculated crystal size of 25.03 nm was formed. FT-IR confirmed the characteristic functional groups contained within the M. burkeana plant were deposited on the formed ferrite nanoparticles. BET analysis confirmed the mesoporous nature of ZnFe2O4 with an average pore diameter of 31.6 nm. Morphological studies demonstrated that the formed nanoparticles had spherical as well as rod-like shapes. ZnFe2O4 photocatalyst illustrated that it may be effortlessly detached by an external magnetic field. The optimum conditions for the 99.8% removal of Methylene Blue was obtained at pH12, within 45min and at the optimum dosage of 25 mg of the catalyst. The as-prepared ZnFe2O4 nanoparticles proved to be easily separated and recycled, and remained efficient even after 5 reuses, proving that the material is highly stable. The ROS studies also demonstrated that electrons are the main factors contributing to the degradation of MB. Upon testing the photocatalytic performance of the sulfonamide antibiotic, sulfisoxazole in water showed a degradation of 67%. This study has shown that these materials can be used in targeting textile and pharmaceutically polluted water.  相似文献   
3.
The organic pollutants in water have been a great environment challenges to human beings, and photocatalytic degradation is an effective method to solve this problem. In this paper, the Rh-loaded cobalt ferrite CoFe2O4 (CFO) nanoparticles have been successfully synthesized by in situ photodeposition of Rh nanoparticles onto the porous CFO particles as the photocatalysts. After incorporating Rh nanoparticles, the CFO/Rh composite has a higher specific surface area and is more efficient in charge separation than the bare CFO. The photocatalytic efficiency of decomposing Malachite Green (MG) is improved from 70% over the bare CFO to 97% over the optimized CFO/Rh in 60 min. The CFO/Rh sample also demonstrates its durability for the degradation of MG in 5 photocatalytic reaction cycles. Additionally, hydroxyl radicals (?OH) and superoxide radicals (?O2?) are proved to be the crucial reactive species during the photocatalytic degradation of MG with CFO/Rh, evidenced by the active species capture experiments. This work provides a useful approach to enhance the photocatalytic activity of semiconductors for degrading organic dyes.  相似文献   
4.
In order to enhance the photocatalytic activity of TiO2 under visible light, Ag nanoparticles were introduced into tridoped B–C–N–TiO2 (TT) catalyst by photoreduction deposition. Ag/B–C–N–TiO2 (ATT) catalysts with the functions of reducing band gap and carrier recombination were prepared. At the same time, the effect of the amount of Ag on the photocatalytic performance of ATT catalyst was investigated. Through XRD, XPS, PL and other characterization methods, the (211)/(101)/Ag interface heterojunction mechanism similar to the traditional Z-scheme heterojunction was proposed. The intervention of Ag nanoparticles changed the P–N interface heterojunction between (211)/(101) to the (211)/(101)/Ag Z-scheme interface heterojunction. The results show that ATT catalyst exhibits the highest photocatalytic activity when the molar amount of Ag is 0.005% with the MB degradation rate of the ATT catalyst (0.01707 min?1), which is 14.59 times of TiO2 (0.00117 min?1) and 2.02 times of TT (0.00847 min?1). In addition, the four cycles efficiencies of ATT for MB degradation were all above 94.00%.This study reveals the possibility of construction of Z-scheme heterojunctions between precious metal nanoparticles and different interfaces of TiO2, and provides a reference for the construction of Z-scheme interface heterojunctions.  相似文献   
5.
《Ceramics International》2021,47(22):31617-31624
The present work aimed to synthesize Zn0.95Ag0.05O (ZnAgO) nanoparticles using rosemary leaf extracts as a green chemistry method. The characterization of Ag-doped ZnO nanoparticles was performed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectrophotometry (UV–visible). The XRD, FTIR, and UV–visible spectra confirmed the formation of the presence of hexagonal ZnAgO nanoparticles. FESEM micrograph shows that the nanoparticles have been distributed homogeneously and uniformly. The morphology of ZnAgO nanoparticles is quasi-spherical configuration. Also, the mean particle size is in the range of 22–40 nm. The photocatalytic degradation of methylene blue in the presence of Ag-doped ZnO nanoparticles is nearly 98.5% after exposing 100 min. The ultraviolet lamp was used as the light source for photocatalyst degradation. The disc diffusion method was chosen to study the antibacterial activity of as-synthesized ZnAgO nanoparticles. Antibacterial activity of Zn0.95Ag0.05O nanoparticles against Staphylococcus aureus and Escherichia coli revealed that the as-synthesized ZnAgO nanoparticles were efficient in inhibition of bacterial growth.  相似文献   
6.
In this work, we have elucidated the pH-induced structural evolution of bismuth molybdate photocatalyst based on a hydrothermal synthesis route. With increasing the pH value of precursor solution, pure Bi2MoO6 was synthesized at pH 2–5, Bi2MoO6-Bi4MoO9 mixture was obtained at pH 7–9, pure Bi4MoO9 was obtained at pH 11, and pure α-Bi2O3 was derived at pH 13. The as-derived samples mainly present particle-like shapes but with different particle sizes (except the observation of Bi2MoO6 nanowires in sample S-pH9). The photocatalytic performances between the samples were compared via the degradation of methylene blue (MB) under irradiation of simulated sunlight. The Bi2MoO6 sample synthesized at pH 2 exhibited the highest photodegradation performance (η(30 min) = 89.8 %, kapp = 0.05007 min?1) among the samples. The underlying photocatalytic mechanism and degradation pathways of MB were systematically analyzed. Moreover, the photodegradation performance of the Bi2MoO6 photocatalyst was further evaluated at different acidic-alkaline environments as well as in degrading various color and colorless organic pollutants, which provides an important insight into its practical application.  相似文献   
7.
Heteroatomic doping is an effective way to optimize the electronic structure of carbon nitride to boost photocatalytic performance. However, the extra introduced defects could result in the decrease of its crystallinity. In this work, crystalline K–I co-doped carbon nitride (K–I–CCN) was simply synthesized from molten salt ionthermal post-calcination in nitrogen atmosphere. Structure characterization results indicate that compared to K–CCN synthesized from conventional molten salt heat treatment in air, nitrogen heating atmosphere is more conductive for the formation of homogeneous pore structure of the catalyst, which has larger surface area and pore volume, while could repairing some defects and resulting in better polymerization crystallization. In addition, except the implanting of K, I doping is still retained after nitrogen heat treatment, thus forming K–I co-doping structure. Due to the positive charge effect of K–I co-doping, K–I–CCN has a narrower band gap, higher surface charge density and stronger charge transport, so it performs significantly enhanced photocatalytic H2 evolution activity from water splitting.  相似文献   
8.
Herein, a novel ZnTe-based photocatalyst is successfully synthesized via a facile combination of water-bath and hydrothermal processes. Morphology characterization and X-ray diffraction analysis reveal that ZnTe presents irregular granular shape and cubic crystal structure. Moreover, Mott-Schottky measurement shows that the conduction band potential of ZnTe is ?0.84 V (vs NHE). With Eosin Y (EY) sensitization, ZnTe exhibits superior photocatalytic hydrogen evolution activity (223.5 μmol g?1 h?1). Meanwhile, WC-ZnTe heterojunction is constructed by depositing ZnTe nanoparticles on bulk WC and obtains the optimal H2 generation rate (559.1 μmol g?1 h?1) under EY sensitization. Electrochemical and photoluminescence results further prove that WC as electron bridge could reduce the interfacial resistance and suppress e?-h+ pairs recombination. This study explores the potential application of ZnTe as a newly active photocatalyst in photocatalytic water splitting, and emphasizes the synergistic effect of dye sensitization and bridge engineering.  相似文献   
9.
《Ceramics International》2022,48(15):21988-21995
Bi4O5Br2/MnxZn1-xFe2O4 nanocomposites with impressive photocatalytic and recyclability properties were synthesised using a microemulsion method. In addition to the photocatalytic effect, the crystal structure and morphology, photoelectrochemical characteristics, magnetic effect and photocatalytic mechanism of Bi4O5Br2/MnxZn1-xFe2O4 were also investigated. As the best sample, the removal rate of the Bi4O5Br2/MnxZn1-xFe2O4 photocatalyst with 7.5 wt% MnxZn1-xFe2O4 to rhodamine B (RhB) reached up to 99.4% within 60 min. The enhanced photocatalyst activity was mainly attributed to the type-II heterojunction formed between Bi4O5Br2 and MnxZn1-xFe2O4, which not only optimised the energy band structure, but also led to the building of an interior electromagnetic field within the Bi4O5Br2/MnxZn1-xFe2O4 heterojunction. Meanwhile, the constantly producing and migrating h+ and ·O2? were the main active components. In particular, the results of the saturation magnetization tests and magnetic recovery experiments revealed that the magnetic composite photocatalyst can be recovered effectively. The results of the removal rate of RhB remaining at 85.2% after five uses reflected the advantages of the stability of the Bi4O5Br2/MnxZn1-xFe2O4 photocatalyst. In brief, this paper presented an original idea to develop a novel composite magnetic photocatalyst and research the enhancement mechanism of photocatalysis.  相似文献   
10.
This study investigated the zinc oxide (ZnO) based heterojunction photocatalysts for improved hydrogen production from water splitting. A sol-gel route was adopted to produce terbium (Tb) and samarium (Sm) co-doped ZnO/CNTs composites where CNTs worked as a support material. The built-in redox couples of lanthanides in co-doped TS-ZnO/CNTs composite showed higher hydrogen evolution activity than Sm doped (Sm-ZnO/CNTs) and Tb doped (Tb–ZnO/CNTs) photocatalysts. When triethanolamine was utilized as a sacrificial agent, the TS-ZnO/CNTs photocatalyst result in a remarkable hydrogen evolution rate of 2683 molh?1g?1 under visible light illumination. The optimum photocatalyst also showed high stability over five successive hydrogen evolution cycles. The better hydrogen evolution rate with TS-ZnO/CNTs was referred to its fine particle size, high reactive surface area, small optical band gap, suppressed reunification of charge carriers and built-in redox couples. The photocatalytic mechanism, involved in water splitting with TS-ZnO/CNTs photocatalyst, is also deduced in this study. This study can stimulate the attempts towards construction of lanthanides based co-doped semiconductor photocatalysts for efficient hydrogen evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号