首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   944篇
  免费   48篇
  国内免费   1篇
综合类   15篇
化学工业   250篇
机械仪表   9篇
建筑科学   5篇
矿业工程   1篇
能源动力   21篇
轻工业   630篇
石油天然气   9篇
无线电   3篇
一般工业技术   14篇
冶金工业   2篇
原子能技术   6篇
自动化技术   28篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   12篇
  2020年   18篇
  2019年   18篇
  2018年   16篇
  2017年   24篇
  2016年   20篇
  2015年   17篇
  2014年   58篇
  2013年   65篇
  2012年   52篇
  2011年   83篇
  2010年   71篇
  2009年   69篇
  2008年   57篇
  2007年   76篇
  2006年   58篇
  2005年   37篇
  2004年   36篇
  2003年   31篇
  2002年   35篇
  2001年   25篇
  2000年   22篇
  1999年   16篇
  1998年   15篇
  1997年   12篇
  1996年   10篇
  1995年   8篇
  1994年   7篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有993条查询结果,搜索用时 62 毫秒
1.
In order to effectively apply soybean meal for the preparation of water-resistant soybean-based adhesives for plywood, the effects of three typical soybean meal products, namely, low-temperature soybean meal (LM), high-temperature soybean meal (HM), and physical soybean meal (PM), on the properties of soybean-based adhesive were investigated. The results indicated that the number of reactive groups in the three soybean meals followed the order LM > HM > PM, which in turn led to various crosslinking densities when these soybean meals were crosslinked by epichlorohydrin-modified polyamide (EMPA) during the curing process. The LM soybean adhesive had 6.6% higher soaking bond strength and 16.5% higher boiling-dry-boiling bond strength than the HM soybean adhesive, and 19% higher soaking bond strength and 33% higher boiling-dry-boiling bond strength than the PM soybean adhesive, respectively. These three soybean meals could be used to prepare soybean adhesives for interior-use plywood because all plywood panels bonded with their adhesives passed a water-soaking test at 63 °C for 3 h, but only the LM soybean adhesive achieved the desired water resistance for floor-base plywood. Among the three evaluated soybean meals, LM was the most promising raw material for the preparation of soybean-based adhesive because of a greater number of reactive groups, higher crosslinking density, and superior bond strength. Plywood panel bonded with HM soybean adhesive had a water resistance lower than, but very close to, the standard required value (>0.8 MPa) for floor-base plywood.  相似文献   
2.
The development of microbial fuel cells (MFCs) into a new type of carbon-neutral wastewater treatment technology requires efficient and low-cost oxygen reduction reaction catalysts in air cathodes. The use of raw soybean powder was investigated for synthesizing Fe–N–C ORR catalysts in a sacrificial SiO2 support method. ZnCl2 etching in the synthesis was found to facilitate the formation of hierarchical porous structures of Fe–N–C catalysts. Fe–N–C(1-1) catalyst synthesized with an optimal soybean/ZnCl2 mass ratio of 1:1 exhibited the highest ORR activity in air cathodes. The use of the obtained Fe–N–C(1-1) catalyst enables a maximum power production of ~0.480 mW cm−2 in MFCs, higher than commercial Pt/C (0.438 mW cm−2) with the same catalyst loading of 2 mg cm−2. Long-term MFC operations demonstrated that the Fe–N–C synthesized from raw soybean have high stability and toxic tolerance, indicating that abundant low cost soybean biomass is a potential material for ORR catalyst development in MFC applications.  相似文献   
3.
Soybean oil gums and soapstocks are important by-products that may potentially be contaminated by persistent organic pollutants (POP) such as polycyclic aromatic hydrocarbons (PAH) and phthalic acid esters (PAE), thus lowering the value when using them as starting materials to produce animal feed additives, food industry ingredients, and pharmaceutical products. In the present work, PAH and PAE distributions in these two types of by-products were detected using solvent extraction–solid phase extraction purification coupled with gas chromatography–mass spectrometry. Total PAH and PAE amounts in the soapstocks were significantly higher than those in the gums, thus indicating that neutralization showed much higher removal efficiency than degumming in terms of PAH and PAE eliminations. Meanwhile, the results proved that the concentrations of these two kinds of contaminants in the soybean oil gums and soapstocks were much higher than those in the soybean oils, suggesting that further investigations were needed and that the contents of PAH and PAE in soybean oil refining by-products should be carefully monitored and regulated.  相似文献   
4.
5.
Soybean [Glycine max (L.) Merr.] oil with high oleic acid (>75%) has increased oxidative stability and health benefits that are valuable for food, fuel, and industrial products. It has been determined that two naturally occurring mutations in genes FAD2-1A and FAD2-1B can combine to produce high oleic soybeans. The objective of this study was to test the effect of these mutant alleles on seed yield and oil and protein concentration. Molecular markers assisted in the creation of a population of 48 BC3F2:4 lines (93.75% expected genome commonality). Each line was classified into one of four genotypic groups where both FAD2-1A and FAD2-1B genes were either homozygous wild type or mutant, respectively. Twelve lines for each genotypic group were evaluated in three replications at six locations across Tennessee. There was no seed yield difference between the high oleic genotypic group and the other groups (P < 0.05). On the other hand, there were differences in fatty acid profiles and oil and protein concentrations. In combination, the mutant FAD2-1A and FAD2-1B alleles produced a mean of 803.1 g kg−1 oleic acid. This is, on average, approximately 500 g kg−1 more oleic acid compared to soybean lines with only one mutant FAD2-1 allele. The high oleic double mutant group had more total oil (228.0 g kg−1) and protein (401.0 g kg−1) compared to all other genotypic groups (P < 0.05). Overall, this specific combination of mutant FAD2-1A and FAD2-1B alleles appears to generate conventional high oleic soybeans without a yield drag.  相似文献   
6.
There is current interest in reducing the trans fatty acids (TFA) in hydrogenated vegetable oils because consumption of foods high in TFA has been linked to increased serum cholesterol content. In the interest of understanding the TFA levels, hydrogenation was carried out in this work on soybean oil and cottonseed oil at two pressures (2 and 5 bar) and 100 °C using commercially available Ni, Pd, and Pt catalysts. The TFA levels and the fatty acid profiles were analyzed by gas chromatography. The iodine value of interest is ~70 for all-purpose shortening and 95–110 for pourable oil applications. In all cases, higher hydrogen pressures produced lower levels of TFA. In the range of 70–95 iodine values for the hydrogenated products, the Pt catalyst gave the least TFA, followed closely by Ni, and then Pd, for both oils. For all three catalysts at 2- and 5-bar pressures and 70–95 iodine values, cottonseed oil contained noticeably less TFA than soybean oil; this is probably because cottonseed oil contains a lower total amount of olefin-containing fatty acids relative to soybean oil. Approximate kinetic modeling was also done on the hydrogenation data that provided additional confirmation of data consistency.  相似文献   
7.
At frying temperature, antioxidants are lost not only by reaction with radicals formed by oil oxidation but also by decomposition and evaporation before they are able to exert antioxidant activity. In this study, it was hypothesized that an additive that can bind or interact with an antioxidant could reduce volatility of the antioxidant at frying temperature. Three synthetic antioxidants, tert‐butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), which have relatively high volatility, were used as antioxidants in this study to examine the hypothesis. Thermogravimetric analysis (TGA) experiments showed that all 22 additives tested in this study effectively reduced volatility of the antioxidants. An NMR study showed that signals of BHT shifted by addition of an additive, evidencing the interaction between the two substances in the chloroform solution. To examine the effect of these interactions on antioxidant activity, heating tests were conducted with soybean oil (SBO) containing 200 ppm antioxidants at 180 °C. Oxidation was monitored with 1H NMR for loss of olefinic protons and bisallylic protons in SBO and with gel permeation chromatography (GPC) for polymerized triacylglycerols (PTAG). Improved antioxidant activity of the antioxidants were observed when combined with several additives tested in this study, and HPLC analysis showed that the antioxidants were effectively reserved by the additives in SBO during the heating process. The concentrations of the antioxidants retained in SBO were relatively well correlated with the antioxidant activity.  相似文献   
8.
Soybean [Glycine max (L.) Merr] with increased oleic acid is desirable to improve oxidative stability and functionality of soybean seed oil. Recently, soybean genotypes with high oleic acid (≥70 %) were developed by breeding programs. Efficient and effective identification of high oleic acid soybean genotypes using non-destructive near infrared reflectance (NIR) on whole seeds would greatly enhance progress in breeding programs. The objective of this study was to develop a calibration equation for NIR determination of high oleic acid from single soybean seeds. A total of 600 intact, single F2 seeds were scanned by NIR. Spectral data were collected between 400 and 2,500 nm at 2 nm intervals. The relationship between NIR spectral patterns of each soybean seed and its oleic acid content was examined. The best predicted equations for oleic acid were selected on the basis of minimizing the standard error of cross-validation and increasing the coefficient of determination. Validation demonstrated that the equations for determining total oleic acid and over 50 % oleic acid content had high predictive ability (r 2 = 0.91 and r 2 = 0.99, respectively). To validate the newly developed equation, F2 seeds from a different genetic background were tested. Again, high oleic acid from single soybean seeds was accurately predicted from various genetic backgrounds. Therefore, applying the calibration equations to NIR will be useful to rapidly and efficiently select high oleic acid soybean genotypes in breeding programs.  相似文献   
9.
以200 t/d的豆制品废水处理工程为研究对象,采用气浮-ABR-生物接触氧化组合工艺对其进行处理。结果表明:当进水COD为8 409~14 501 mg/L、BOD5为3 246~6 894 mg/L、NH4+-N为41~111 mg/L、TN为187~365 mg/L、TP为21~39 mg/L时,组合工艺出水水质达到了当地污水处理厂纳管标准。该组合工艺对COD、BOD、TN、TP平均去除率分别达到98.31%、98.30%、91.23%和95.36%。该组合工艺具有工程费用低、运行费用少、耐冲击负荷能力强等优点。  相似文献   
10.
以大豆粗脂肪酸值检测方法为研究对象,对GB/T 14488.1-2008《植物油料含油量测定》与GB/T 5530-2005的标准测定方法进行改进,减少称量步骤、缩短抽提时间,以提高检测效率。试验结果表明:改进后的大豆粗脂肪酸值检测方法在保证检测结果准确性的前提下,可大幅缩短检测时间,提升检测效率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号