首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   74篇
  国内免费   40篇
电工技术   1篇
综合类   37篇
化学工业   110篇
金属工艺   6篇
机械仪表   12篇
建筑科学   1篇
矿业工程   1篇
轻工业   103篇
无线电   24篇
一般工业技术   17篇
冶金工业   2篇
自动化技术   153篇
  2024年   1篇
  2023年   8篇
  2022年   17篇
  2021年   51篇
  2020年   22篇
  2019年   25篇
  2018年   17篇
  2017年   12篇
  2016年   8篇
  2015年   19篇
  2014年   30篇
  2013年   20篇
  2012年   24篇
  2011年   27篇
  2010年   28篇
  2009年   17篇
  2008年   27篇
  2007年   34篇
  2006年   27篇
  2005年   16篇
  2004年   14篇
  2003年   11篇
  2002年   5篇
  2001年   5篇
  2000年   1篇
  1995年   1篇
排序方式: 共有467条查询结果,搜索用时 46 毫秒
1.
2.
Ionomics is a novel multidisciplinary field that uses advanced techniques to investigate the composition and distribution of all minerals and trace elements in a living organism and their variations under diverse physiological and pathological conditions. It involves both high-throughput elemental profiling technologies and bioinformatic methods, providing opportunities to study the molecular mechanism underlying the metabolism, homeostasis, and cross-talk of these elements. While much effort has been made in exploring the ionomic traits relating to plant physiology and nutrition, the use of ionomics in the research of serious diseases is still in progress. In recent years, a number of ionomic studies have been carried out for a variety of complex diseases, which offer theoretical and practical insights into the etiology, early diagnosis, prognosis, and therapy of them. This review aims to give an overview of recent applications of ionomics in the study of complex diseases and discuss the latest advances and future trends in this area. Overall, disease ionomics may provide substantial information for systematic understanding of the properties of the elements and the dynamic network of elements involved in the onset and development of diseases.  相似文献   
3.
4.
目的对不同基因型的丙型肝炎病毒(HCV)的E1、E2蛋白进行生物信息学比较分析,以找出重要的生物信息学数据。方法从Gene Bank中获取不同基因型HCV的E1、E2蛋白核苷酸与氨基酸序列,运用DNA Star,ClustalX,Bio Edit等国际通用的软件进行氨基酸和核苷酸的序列比对,计算核苷酸和氨基酸同源性。在线软件TMHMM v2.0分析E1、E2蛋白跨膜区。AntheProt5.0软件分析二级结构。结果 E1氨基酸起始于aa 193—aa196和终止于aa 382—aa 383,E2蛋白氨基酸起始于aa 384和终止于aa 744—aa 754。不同基因型间E1、E2蛋白基因核苷酸同源性为59.7%-77.0%,氨基酸同源性为60.6%-82.8%。E1、E2蛋白存在3个跨膜区:E1存在2个跨膜区,位于aa 273—aa 293和aa 363—aa 383;E2蛋白存在1个跨膜区,位于aa 723—aa 744。二级结构分析发现不同型HCV E1、E2蛋白富含α螺旋(21%-30%),β折叠(26%-36%)和卷曲结构(43%-48%)。结论HCV E1、E2核苷酸和氨基酸序列表现为较大的异质性,其蛋白跨膜区富含α螺旋,胞外区以β折叠为主。  相似文献   
5.
6.
7.
8.
9.
N-glycosylation is one of the most important post-translational modifications that influence protein polymorphism, including protein structures and their functions. Although this important biological process has been extensively studied in mammals, only limited knowledge exists regarding glycosylation in algae. The current research is focused on the red microalga Porphyridium sp., which is a potentially valuable source for various applications, such as skin therapy, food, and pharmaceuticals. The enzymes involved in the biosynthesis and processing of N-glycans remain undefined in this species, and the mechanism(s) of their genetic regulation is completely unknown. In this study, we describe our pioneering attempt to understand the endoplasmic reticulum N-Glycosylation pathway in Porphyridium sp., using a bioinformatic approach. Homology searches, based on sequence similarities with genes encoding proteins involved in the ER N-glycosylation pathway (including their conserved parts) were conducted using the TBLASTN function on the algae DNA scaffold contigs database. This approach led to the identification of 24 encoded-genes implicated with the ER N-glycosylation pathway in Porphyridium sp. Homologs were found for almost all known N-glycosylation protein sequences in the ER pathway of Porphyridium sp.; thus, suggesting that the ER-pathway is conserved; as it is in other organisms (animals, plants, yeasts, etc.).  相似文献   
10.
The Medical and Pharmaceutical industries have shown high interest in the precise engineering of protein hormones and enzymes that perform existing functions under a wide range of conditions. Proteins are responsible for the execution of different functions in the cell: catalysis in chemical reactions, transport and storage, regulation and recognition control. Computational Protein Design (CPD) investigates the relationship between 3-D structures of proteins and amino acid sequences and looks for all sequences that will fold into such 3-D structure. Many computational methods and algorithms have been proposed over the last years, but the problem still remains a challenge for Mathematicians, Computer Scientists, Bioinformaticians and Structural Biologists. In this article we present a new method for the protein design problem. Clustering techniques and a Dead-End-Elimination algorithm are combined with a SAT problem representation of the CPD problem in order to design the amino acid sequences. The obtained results illustrate the accuracy of the proposed method, suggesting that integrated Artificial Intelligence techniques are useful tools to solve such an intricate problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号