首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   31篇
  国内免费   4篇
综合类   2篇
化学工业   16篇
金属工艺   1篇
机械仪表   4篇
建筑科学   1篇
能源动力   5篇
水利工程   2篇
无线电   122篇
一般工业技术   109篇
冶金工业   1篇
原子能技术   4篇
自动化技术   5篇
  2023年   5篇
  2022年   1篇
  2021年   6篇
  2020年   15篇
  2019年   12篇
  2018年   8篇
  2017年   11篇
  2016年   9篇
  2015年   4篇
  2014年   8篇
  2013年   11篇
  2012年   9篇
  2011年   6篇
  2010年   9篇
  2009年   13篇
  2008年   16篇
  2007年   30篇
  2006年   26篇
  2005年   18篇
  2004年   17篇
  2003年   7篇
  2002年   16篇
  2001年   4篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
1.
We demonstrated a novel wide color-range tunable, highly efficient and low efficiency roll-off fluorescent organic light-emitting diode (OLED) using two undoped ultrathin emitters having complementary colors and an interlayer between them. The OLED can be tuned to emit sky blue (0.22, 0.30), cold white (0.29, 0.33), warm white (0.43, 0.42) and yellow (0.40, 0.45) according to the Commission Internationale de L’Eclairage (CIE) 1931 (x, y) chromaticity diagram. The device fabrication was simplified by eliminating doping process in the emission layers. The influence of interlayer thickness on luminous efficiency, efficiency roll-off and color tuning mechanism is thoroughly studied. The recombination zone is greatly broadened in the optimized device, which contributes to stable energy transfer to both emitters and suppressed concentration quenching. With a threshold voltage of 2.82 V, the color tunable organic light emitting diode (CT-OLED) shows a maximum luminance of 39,810 cd/m2, a peak external quantum efficiency (EQE) 6% and the efficiency roll-off as low as 11.1% at the luminance from 500 cd/m2 to 5000 cd/m2. This structure of CT-OLED has great advantages of easy fabrication and low reagent consumption. The fabricated CT-OLEDs are tunable from cold white (0.30, 0.36) to warm white (0.43, 0.42) with correlated color temperature (CCT) 6932 K and 3072 K, respectively, demonstrating that our proposed approach helps to meet the need for lighting with various CCTs.  相似文献   
2.
We present a series of differently substituted star-shaped hexaaryltriindoles with tunable light-emitting properties. The deep blue emission is unchanged by donor peripheral substituents while an increasing acceptor character produces a reduction of the optical gap, an increased Stokes shift and eventually leads to the appearance of a new electronic level and to the simultaneous deep blue (413 nm) and green (552 nm) emission in solution. Quenching by concentration increases with the acceptor character but is lower as the tendency of these compounds to aggregate is stronger. Solution processed thin films present optical and morphological qualities adequate for device fabrication and similar electronic structure compared to solutions with an emission range from 423 nm up to 657 nm (red), demonstrating the possibility of tuning the energy levels by chemical functionalization. We have fabricated and characterized single-layer solution processed organic light emitting diodes (OLED) to investigate the influence on transport and emission properties of the substituting species. We analyzed the IV response using a single-carrier numerical model that includes injection barriers and non-uniform electric-field across the layer. As a result, we obtained the electric field dependence of the mobility for each device. Best results are obtained on the most electron rich derivative functionalized with six donor methoxy groups. This material shows the highest emission efficiency in solid state, due to aggregation-induced enhancement, and better transport properties with the highest mobility and a very low turn-on voltage of 2.8 V. The solution processed OLED devices produce stable deep blue (CIE coordinates (0.16, 0.16)) to white (CIE coordinates (0.33, 0.3)) emission with similar luminous efficiencies.  相似文献   
3.
4.
《Drying Technology》2013,31(6):1099-1112
Infrared heating/drying of paper is becoming very common in industry. However, there is a lack of fundamental information explaining the transport phenomena occurring within a paper sheet due to energy supplied by a gas-fired infrared emitter. This experimental study provides basic drying and temperature data for moist paper exposed to gas-fired infrared radiation energy. Two paper types, linerboard and bleached, at three basis weight levels, are used in this study.  相似文献   
5.
Patterned reduced graphene oxide (rGO) films with vertically aligned tip structures are fabricated by a straightforward self‐assembly method. The size, uniformity of the patterns, and alignment of the tips are successfully controlled according to the concentration of a GO/octadecylamine (ODA)‐dispersed solution. The surface energy difference between the GO/ODA solution and a self‐assembled water droplet is a critical parameter for determining the pattern structure. Numerous rGO nanosheets are formed so as to be vertically aligned with respect to the substrate during film fabrication at GO concentrations below 2.0 g/L. These samples provide high field‐emission characteristics. The patterned rGO arrays are highly flexible with preservation of the field emission properties, even at large bending angles. This is attributed to the high crystallinity, emitter density, and good chemical stability of the rGO arrays, as well as the strong interactions between the rGO arrays and the substrate.  相似文献   
6.
7.
A new series of blue‐light‐emitting fluorene derivatives have been synthesized and characterized. The fluorene derivatives have high fluorescence yields, good thermal stability, and high glass‐transition temperatures in the range 145–193 °C. Organic light‐emitting diodes (OLEDs) fabricated using the fluorene derivatives as the host emitter show high efficiency (up to 5.3 cd A–1 and 3.0 lm W–1) and bright blue‐light emission (Commission Internationale de L'Eclairage (CIE) coordinates of x = 0.16, y = 0.22). The performance of the non‐doped fluorene‐based devices is among the best fluorescent blue‐light‐emitting OLEDs. The good performance of the present blue OLEDs is considered to derive from: 1) appropriate energy levels of the fluorene derivatives for good carrier injection; 2) good carrier‐transporting properties; and 3) high fluorescence efficiency of the fluorene derivatives. These merits are discussed in terms of the molecular structures.  相似文献   
8.
A new organic blue‐light emitter 1‐methyl‐2‐(anthryl)‐imidazo[4,5‐f][1,10]‐phenanthroline ( 1 ) has been synthesized and fully characterized. The utility of compound 1 as a blue‐light emitter in electroluminescent (EL) devices has been evaluated by fabricating a series of EL devices A where compound 1 functions as an emitter. The EL spectrum of device series A has the emission maximum at 481 nm with the CIE (Commission Internationale de l'Eclairage) color coordinates 0.198 and 0.284. The maximum luminance of devices in series A is 4000 cd m–2 and the best external quantum efficiency of device series A is 1.82 %. The utility of compound 1 as an electron injection–electron transport material has been evaluated by constructing a set of EL devices B where 1 is used as either the electron‐injection layer or the electron injection–electron transport layer. The performance of device series B is compared to the standard device in which Alq3 (tris(8‐hydroxyquinoline) aluminum) is used as the electron injection–electron transport layer. The experimental results show that the performance of 1 as an electron injection–electron transport material is considerably better than Alq3. The stability of device series B is comparable to that of the standard Alq3 device. The excellent performance of 1 as an electron injection/transport material may be attributed to the strong intermolecular interactions of 1 in the solid state as revealed by single‐crystal X‐ray diffraction analysis. In addition, compound 1 is a colorless material with a much larger highest occupied molecular orbital–lowest unoccupied molecular (HOMO–LUMO) gap than Alq3, which renders it potentially useful for a wide range of applications in EL devices.  相似文献   
9.
To enhance the performance of organic devices, doping and graded mixed‐layer structures, formed by co‐evaporation methods, have been extensively adopted in the formation of organic thin films. Among the criteria for selecting materials systems, much attention has been paid to the materials' energy‐band structure and carrier‐transport behavior. As a result, some other important characteristics may have been overlooked, such as material compatibility or solubility. In this paper, we propose a new doping method utilizing fused organic solid solutions (FOSSs) which are prepared via high‐pressure and high‐temperature processing. By preparing fused solid solutions of organic compounds, the stable materials systems can be selected for device fabrication. Furthermore, by using these FOSSs, doping concentration and uniformity can be precisely controlled using only one thermal source. As an example of application in organic thin films, high‐performance organic light‐emitting diodes with both single‐color and white‐light emission have been prepared using this new method. Compared to the traditional co‐evaporation method, a FOSS provides us with a more convenient way to optimize the doping system and fabricate relatively complicated organic devices.  相似文献   
10.
纯β核素液闪测量技术应用广泛,实际工作中往往需要确定核素的测量效率;但除~3H、~(14)C等半衰期较长的核素外,多无系列猝灭标准源,给工作带来很多不便。本文根据国外有关方面研究,做了以~3H标准源为基准、通过理论计算求出其它纯β核素在均相条件下的测量效率和猝灭校正曲线,进而求得放射性的活度。本方法使用简便、结果可靠,实用性强。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号