首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   1篇
  国内免费   7篇
电工技术   3篇
综合类   3篇
化学工业   54篇
金属工艺   12篇
机械仪表   2篇
能源动力   53篇
无线电   27篇
一般工业技术   37篇
原子能技术   2篇
自动化技术   2篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   8篇
  2016年   3篇
  2015年   1篇
  2014年   10篇
  2013年   10篇
  2012年   7篇
  2011年   17篇
  2010年   13篇
  2009年   20篇
  2008年   14篇
  2007年   10篇
  2006年   11篇
  2005年   7篇
  2004年   4篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   8篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
排序方式: 共有195条查询结果,搜索用时 46 毫秒
1.
Nitrogen-doped graphene-ZnS composite (NG-ZnS) was synthesized by thermal treatment of graphene-ZnS composite (G-ZnS) in NH3 medium. In the second step, the as-synthesized samples were deposited on indium tin oxide glass (ITO) by electrophoretic deposition for photocatalytic hydrogen evolution reaction. The as-prepared NG-ZnS-modified ITO electrode displayed excellent photocatalytic activity, rapid transient photocurrent response, superior stability and high recyclability compared to the pure ZnS and G-ZnS-modified ITO electrode due to the synergy between the photocatalytic activity of ZnS nanorods and the large surface area and high conductivity of N-graphene.  相似文献   
2.
《Ceramics International》2020,46(6):7888-7895
Graphite carbon nitride (g-C3N4) is an appealing metal-free photocatalyst for hydrogen evolution, but the potential has been limited by its poor visible-light absorption and unsatisfactory separation of photo-induced carriers. Herein, a facile one-pot strategy to fabricate carbon self-doped g-C3N4 composite through the calcination of dicyanamide and trace amounts of dimethylformamide is presented. The as-obtained carbon self-doped catalyst is investigated by X-ray photoelectron spectroscopy (XPS), confirming the substitution of carbon atoms in original sites of bridging nitrogen. We demonstrate that the as-prepared materials display remarkably improved visible-light absorption and optimized electronic structure under the premise of principally maintaining the tri-s-triazine based crystal framework and surface properties. Furthermore, the carbon doped g-C3N4 composite simultaneously weakens the transportation barrier of charge carriers, suppresses charge recombination and raises the separated efficiency of photoinduced holes and electrons on account of the extension of pi conjugated system. As a result, carbon self-doped g-C3N4 exhibits 4.3 times greater photocurrent density and 5.2 times higher hydrogen evolution rate compared with its bulk counterpart under visible light irradiation.  相似文献   
3.
Solar-driven photoelectrochemical water splitting technology is a promising avenue for a sustainable hydrogen production. In this work, a comprehensive 2-dimensional model is developed and numerically simulated with hematite (α-Fe2O3) as the principal photoelectrode. The model evaluates light absorption, charge transport and electrochemical reactions to elucidate the effects of light transmitting materials, electrolyte height and electrolyte velocity on hydrogen and oxygen gas production. Results indicated that major losses in photocurrents are attributed to the transparent conducting oxide while losses due to the electrolyte increase with its height. Gas concentrations increase with increasing photocurrent densities and also in the direction of the flow. Gas bubbles however decrease with increasing electrolyte velocity. From these results, light reception in the reactor is uneven and poses a bigger challenge due to the bias in gas bubble distribution. Prospects of upscaling tandem schemes hence not only lie in the semiconductor material combinations but rather in the proper integration of system components and operating conditions.  相似文献   
4.
油管钢在土壤环境中受到腐蚀后会在表面形成一层保护基体减缓腐蚀的钝化膜。本文讲述了采用电化学阻抗谱(EIS)和光电流技术研究J55油管钢在模拟土壤环境(高pH值)中,拉伸、压缩及弯曲应力状态下所形成钝化膜的电化学性能,以期为碳钢腐蚀与防护提供一定的理论参考。  相似文献   
5.
Multifunctional properties of nanomaterials becomes a hot topic in nano research for the development of multifunctional devices, because modern devices need multifunctional platform for the high efficient plural performance on a single device. Here, we introduce a multifunctional π-conjugated poly (3-methylthiophene) (P3MT) nanotube (NT), showing controllable optical and electrical properties through the control of doping level. P3MT NTs were electrochemically synthesized in the low temperature (−40 °C) on the nanoporous template. The change of doping level by post cyclic voltammetry (CV) treatment on the P3MT lead the variance of polaron/bipolaron band, resulting into the drastic change of ultraviolet-visible absorption and photoluminescence properties. While P3MT NTs before CV treatment show an ohmic behavior in the current-voltage characteristics, those after CV treatment show high photocurrent. From the field emission experiment, the P3MT NTs before CV treatment have a relatively low turn-on electric field and stable electron emission property compared to the P3MT NTs after CV treatment. This shows that the π-conjugated polymers should be shed new light on their multifunctionality for the potential application to the multifunctional platform of opto-electronic nanodevices.  相似文献   
6.
《Ceramics International》2017,43(10):7861-7865
Partial substitution of group 10 metal for titanium is predicted theoretically to be one of the most effective ways to decrease the band gap of PbTiO3-based ferroelectric photovoltaic materials. It is therefore of interest to experimentally investigate their ferroelectric and photovoltaic properties. In this work, we focus on the electrical and photocurrent properties of Ni-doped PbTiO3 thin films prepared via a sol-gel route. The nickel incorporation does not modify the crystalline structure of PbTiO3 thin film, but it can increase the dielectric constant, ferroelectric polarization and photocurrent, and simultaneously decrease the band gap. The maximum remnant polarization (Pr) of 58.1 μC/cm2 is observed in PbTi0.8Ni0.2O3 thin film, and its photocurrent density is improved to be approximately one order larger than that of PbTiO3 thin film and simultaneously exhibits the polarization-dependent switching characteristic, which may be a promising choice for ferroelectric photovoltaic applications.  相似文献   
7.
In this study, we report the facile fabrication of Sn-doped hematite film via mid-situ and ex-situ doping methods for efficient photoelectrochemical (PEC) performances. The morphology of Sn-doped Fe2O3 films was varied with Sn precursor in the mid-situ doping process. The addition of SnCl2 rendered a smooth-surfaced and well-distributed nanorod morphology, but SnCl4 gave a deformed nanorod structure covered with layered coalescence of SnO2 particles. The former demonstrated much higher photoelectrochemical performances as photoanodes than the latter. The photocurrent can be further improved by surface modification with SnCl4 through spin-coating method. The effects of Sn precursors on the morphology, surface characteristics and the PEC properties of the photoanodes are investigated.  相似文献   
8.
The electrical properties of CdS-polyvinyl alcohol (CdS-PVA) nanocomposites have been investigated in details. The junction behavior of CdS-PVA and a conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) heterojunction have been studied. The current–voltage characteristics of the nanocomposite samples have also performed at different bending angles. The bending study has been carried out after deposition of CdS-PVA and CdS-PVA/PEDOT:PSS heterojunction films on indium tin oxide coated (ITO) flexible polyethylene terephthalate (PET) substrates. Spectral dependent photoconductive properties of the nanocomposite-polymer heterojunctions have been investigated. The electrochemical photosensing behaviors have been demonstrated using CdS-PVA nanocomposites and CdS-PVA/PEDOT:PSS heterojunction films as photoanodes.  相似文献   
9.
10.
Photoelectrodes consisting of TiO2 nanotube layers with different thicknesses (0.5 μm, 1.7 μm, 3 μm, 6 μm, 9 μm, and 18 μm) were prepared by anodization of titanium substrates and subsequent surface modification by a heat treatment at 400 °C in the presence of urea pyrolysis products. In contrast to unmodified TiO2 nanotubes, the modified photoelectrodes exhibit photocurrents under visible light irradiation down to 750 nm. Photocurrent transients indicate enhanced recombination unless a suitable hole-scavenger, like iodide, is present since the photogenerated holes do not oxidize water efficiently. In the visible light the photoconversion efficiency increases significantly with nanotube length. The maximum incident photon-to-current efficiency (IPCE) was observed for tubes with the length of 6-9 μm (IPCE ∼4.5% and 1.4% at 450 nm and 550 nm, respectively) and the photocurrent enhancement with increasing tube length is found to be stronger at longer irradiations wavelengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号