首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72760篇
  免费   3169篇
  国内免费   1430篇
电工技术   1507篇
综合类   3451篇
化学工业   36348篇
金属工艺   2478篇
机械仪表   1095篇
建筑科学   3059篇
矿业工程   2134篇
能源动力   253篇
轻工业   11739篇
水利工程   469篇
石油天然气   3080篇
武器工业   244篇
无线电   1342篇
一般工业技术   7526篇
冶金工业   1382篇
原子能技术   434篇
自动化技术   818篇
  2024年   351篇
  2023年   1734篇
  2022年   1842篇
  2021年   1724篇
  2020年   1714篇
  2019年   1872篇
  2018年   981篇
  2017年   1415篇
  2016年   1610篇
  2015年   2027篇
  2014年   3982篇
  2013年   3246篇
  2012年   3979篇
  2011年   4075篇
  2010年   3534篇
  2009年   3941篇
  2008年   4416篇
  2007年   3918篇
  2006年   3822篇
  2005年   3858篇
  2004年   3615篇
  2003年   3032篇
  2002年   2328篇
  2001年   2072篇
  2000年   1794篇
  1999年   1492篇
  1998年   1332篇
  1997年   1205篇
  1996年   1105篇
  1995年   1003篇
  1994年   838篇
  1993年   736篇
  1992年   728篇
  1991年   693篇
  1990年   634篇
  1989年   568篇
  1988年   36篇
  1987年   25篇
  1986年   15篇
  1985年   18篇
  1984年   17篇
  1983年   11篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1965年   1篇
  1959年   1篇
  1951年   4篇
  1948年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
韩国LG Chem公司2021年8月30日宣布,其与韩国最大的回收MMA(甲基丙烯酸甲酯)生产商Veolia R&E公司签署了稳定供应回收的MMA并提升质量的战略合作伙伴关系协议(MOU)。Veolia R&E公司是法国威立雅集团的子公司。威立雅集团是世界上最大的环境服务公司(水处理、废弃物和能源),于2010年开发了世界上第一个裂解废弃人造大理石并将其回收成MMA的技术。LG Chem公司和Veolia R&E公司正在合作使用化学回收原料生产丙烯腈-丁二烯-苯乙烯(ABS,是一种高附加值合成树脂)。  相似文献   
2.
利用改性沸石填充电化学反应器对30 mg/L的模拟生活氨氮污水进行处理试验研究,考察了电流密度、氯离子浓度和初始pH对该反应器处理氨氮污水的影响,并对各因素下反应器处理低浓度氨氮污水的反应结果进行了探讨与分析。结果表明,在电流密度为13.19 mA/cm2、初始pH为7.89、氯氮比为6.2时,其氨氮的去除率可达到96.71%;各因素交互作用对于该体系下氨氮去除效果影响大小为:电流密度&氯氮比>电流密度&pH>氯氮比&pH。  相似文献   
3.
为推进病历数字化发展,并确保其信息的安全性,将以HIS电子病历系统为基础,采用安信数字签名技术和PKI或PMI系统搭建相信并加以任用的授权服务,经过针对实际的PKC和CA的确认、委托与管控构建整体的数字签名平台,完成电子病历数字签名功能设计,以加强电子文件的完整性、真实性和不可抵赖性。最后以某医院的XML结构化的电子病历系统为基础进行项目实施,完成了医护人员通过HIS的快速身份认证,和准确地数字签名。  相似文献   
4.
裂缝的产生会导致井壁混凝土的水密性能和耐久性能降低.高吸水性树脂(SAP)可在裂缝中膨胀并堵塞裂缝,从而提高井壁混凝土的水密性能和耐久性能.但SAP堵塞裂缝的机理仍需进一步研究.探究了SAP对混凝土力学性能的影响.通过水渗透测试分析了SAP的裂缝堵塞效果.并借助X射线计算机断层扫描技术探究了裂缝中SAP颗粒的形态特征.结果表明,SAP的掺入导致混凝土的抗压强度和劈裂抗拉强度略有减小.SAP的掺入也会导致预开裂砂浆中的水流速减小,水流速的减小程度随SAP掺量的增加而增大.SAP可在SAP孔中膨胀并堵塞SAP孔位置的裂缝,说明SAP导致水流速减小的原因是SAP能够在裂缝中发生膨胀.  相似文献   
5.
为提高羊皮中胶原蛋白的提取率和利用率,采用酸酶复合法提取羊皮胶原蛋白,再利用静电纺技术制备胶原基纳米纤维。以羊皮胶原蛋白提取率为评价指标,考察料液比、乙酸浓度、胃蛋白酶浓度和酶解时间四个因素对羊皮胶原蛋白提取效果的影响,确定单因素最优水平;在此基础上,采用正交试验设计对羊皮胶原蛋白提取的工艺条件进行优化,并通过紫外光谱扫描、红外光谱扫描、SDS-PAGE图谱和扫描电镜等生化技术探讨酶解过程对胶原蛋白结构性质的影响;然后将胶原蛋白和聚乳酸复合静电纺丝,制备得到胶原基纳米纤维。结果表明,酸酶复合法提取羊皮胶原蛋白最佳工艺为:料液比1:25 g/mL、乙酸浓度1.2 mol/L、胃蛋白酶用量1.0%、酶解时间72 h,在此条件下羊皮胶原蛋白提取率为38.42%±0.49%;紫外光谱扫描显示羊皮胶原蛋白于230 nm附近出现最大紫外吸收峰;红外光谱扫描、SDS-PAGE图谱分析表明羊皮胶原蛋白主要有α1、α2、β三种亚基成分组成,属于Ⅰ型胶原蛋白,且胶原蛋白的空间结构保留完整;扫描电镜直观表明了羊皮胶原蛋白的纤维网络结构保留较完整;静电纺丝得到的胶原...  相似文献   
6.
杨立宁  郑东昊  王立新  杨光 《化工进展》2022,41(11):5961-5967
以具有轻质高强优异性能的蜻蜓翅脉结构为设计灵感,在分析翅脉网格结构抗冲击原理的基础上,设计了传统和仿生两类对比结构。采用熔融挤出3D打印机成功制备了具有不同结构的连续碳纤维增强聚乳酸复合材料试样,并对不同结构复合材料试样的拉伸性能和抗冲击性能进行了测试和对比分析。研究分析结果表明:由于拉伸力方向上的连续碳纤维含量相对较少,限制了仿生结构复合材料抗拉强度的提高,但仿生结构的平均抗拉强度为传统结构的1.18倍;当仿生结构复合材料试样受到冲击力时,其内部六边形结构的连接角度会发生变化,从而极大消耗冲击能量,同时具有六边形网格结构的连续碳纤维可以有效阻碍裂纹的扩展,因此仿生结构的平均冲击韧性可以达到传统结构的2.46倍;仿生蜻蜓翅脉结构可以显著提高增材制造复合材料的综合力学性能,且对于抗冲击性能的提高具体突出效果。连续碳纤维增强树脂基复合材料的有效可行的仿生蜻蜓翅脉结构设计和增材制造,可极大扩展其在高冲击载荷领域中的相应应用。  相似文献   
7.
吴静湖  李光凤 《安徽化工》2021,47(3):132-134
建立了PVB树脂中氯含量的测定方法.采用添加混合试剂高温灰化,沸水浸取,分光光度法测定PVB树脂样品中的氯含量.该方法具有良好的精密度和准确度,分析成本低.  相似文献   
8.
稀土改性沸石具有优异的污染物吸附和置换能力,但其用于水体治理的研究多停留于实验室阶段,罕有实际工程应用。以江西省瑞昌市城东片区黑臭水体应急治理项目为实例,探索稀土改性沸石用于城镇黑臭水体治理的可行性。城东片区位于瑞昌市中心城区,分布有4条主要排污渠道,属典型黑臭水体,溶解氧含量低,氨氮、总磷浓度高,呈黑灰色,且散发恶臭。通过前期调研、方法研究和技术论证,研究提出“稀土改性沸石+人工曝气”的技术路线,对区域黑臭水体实施协同治理,从而达到改善水质、恢复水生态、提高自净能力的目的。研究结果表明:该工艺可同步去除水体中氮、磷污染物,去除效率最高可达75%以上,具有显著的生态效益,可为城镇黑臭水体应急治理方案开拓新思路。  相似文献   
9.
面对癌症对人类健康带来的威胁,纳米药物治疗已经越来越受到人们的关注,因此高分子药物控制释放体系的制备就显得越来越迫切。本文重点介绍了改性β-环糊精键接到高分子聚合物上制备复合高分子药物载体的方法,并对复合高分子载体的研究进展进行了总结。  相似文献   
10.
孙建英  卿凤翎 《化工进展》2020,39(9):3395-3402
有机氟材料具有优异的热氧稳定性、耐化学腐蚀性、耐老化性、不黏性、电绝缘性以及极小的摩擦系数等特性,因此作为一种不可替代的材料广泛应用于高新技术产业。近年来高新技术产业发展对高性能有机氟材料的需求引发了学术界和工业界对氟材料的研究兴趣。依据本文作者的研究经历及有机氟材料的发展方向,本文介绍了氟树脂(新型含氟聚合物、电活性含氟聚合物、新型全氟磺酸聚合物、聚四氟乙烯3D打印)及氟橡胶(过氧化物硫化氟橡胶、耐低温氟醚橡胶、耐高温全氟醚橡胶、全氟聚醚基类玻璃橡胶)的制备科学及应用进展,特别阐述为了满足航空航天、能源、信息等高新技术产业需求发展的新一代高性能有机氟材料。本文也介绍了近期出现的聚四氟乙烯新成型技术及类玻璃氟橡胶。文章指出发展绿色环保和高效的高性能有机氟材料制备及成型加工方法是今后的发展方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号