首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   5篇
  国内免费   1篇
电工技术   10篇
综合类   7篇
化学工业   333篇
机械仪表   3篇
建筑科学   9篇
矿业工程   1篇
能源动力   452篇
轻工业   2篇
石油天然气   10篇
一般工业技术   20篇
冶金工业   5篇
原子能技术   1篇
自动化技术   3篇
  2023年   18篇
  2022年   23篇
  2021年   30篇
  2020年   49篇
  2019年   40篇
  2018年   30篇
  2017年   19篇
  2016年   20篇
  2015年   21篇
  2014年   32篇
  2013年   46篇
  2012年   36篇
  2011年   88篇
  2010年   78篇
  2009年   64篇
  2008年   43篇
  2007年   37篇
  2006年   27篇
  2005年   30篇
  2004年   21篇
  2003年   25篇
  2002年   20篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1980年   3篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
1.
Partial gasification of coal char was conducted with addition of metal oxides for co-production of fuel gas and methane decomposition catalysts. Effect of the metal composition (Ni, Co and Fe based mono- or bi-metals) was investigated on the fuel gas production and the resultant catalyst surface and textural properties, morphology and performance in catalytic methane decomposition (CMD). Besides H2-rich fuel gas production (the combustion energy up to 11.03–23.42 MJ/kgchar) from the gasification, the gasification residue can directly serve as the effective and efficient catalyst for CMD. The Fe and Fe–Co composite oxides were found to be better among the mono- and bi-metallic oxides for the fuel gas production during the gasification, respectively. The Ni-based mono-/bi-metallic catalysts could display high and stable methane conversion (up to 80%) during the 600-min CMD test at 850 °C. Promotional role of the second metal in CMD was discussed on the carbon diffusion, metal mobility and reducibility, formation and growth of the deposited carbons. The formed carbon morphology after CMD was analyzed based on the Kirkendall effect and Tammann temperature and further correlated to the potential catalyst deactivation.  相似文献   
2.
This paper investigates the hot gas temperature effect on enhancing hydrogen generation and minimizing tar yield using zeolite and prepared Ni-based catalysts in rice straw gasification. Results obtained from this work have shown that increasing hot gas temperature and applying catalysts can enhance energy yield efficiency. When zeolite catalyst and hot gas temperature were adjusted from 250 °C to 400 °C, H2 and CO increased slightly from 7.31% to 14.57%–8.03% and 17.34%, respectively. The tar removal efficiency varies in the 70%–90% range. When the zeolite was replaced with prepared Ni-based catalysts and hot gas cleaning (HGC) operated at 250 °C, H2 contents were significantly increased from 6.63% to 12.24% resulting in decreasing the hydrocarbon (tar), and methane content. This implied that NiO could promote the water-gas shift reaction and CH4 reforming reaction. Under other conditions in which the hot gas temperature was 400 °C, deactivated effects on prepared Ni-based catalyst were observed for inhibiting syngas and tar reduction in the HGC system. The prepared Ni-based catalyst worked at 250 °C demonstrate higher stability, catalyst activity, and less coke decomposition in dry reforming. In summary, the optimum catalytic performance in syngas production and tar elimination was achieved when the catalytic temperature was 250 °C in the presence of prepared Ni-based catalysts, producing 5.92 MJ/kg of lower heating value (LHV) and 73.9% tar removal efficiency.  相似文献   
3.
The purpose of the current study is to identify the potential of energy-efficient hydrogen (H2) production from date seeds as biomass via steam gasification process along with heat integration in Gulf countries. A reaction kinetics model has been established for steam gasification with in-situ carbon dioxide (CO2) capture of date seeds using MATLAB software. The kinetics of reactions involved in the gasification process was calculated using the optimization parameters fitting approach. The heat integration model has been developed via mixed integer nonlinear programming (MINLP) in MATLAB. In the parametric study, temperature and steam/biomass ratio considered their impact on syngas composition and energy recovery. Results showed that both variables have a strong positive effect on H2 production and depicted maximum production of 68 mol% at a temperature of 750 °C with steam/biomass ratio of 1.2. Methane (CH4) and CO2 production were low in the product gas, which showed the activity of water gas shift reaction, methanation reaction, and carbonation reaction. Utilization of waste heat via process heat integration within the system reduced system's external heat load. More than 70% of energy recovered, which could be utilized for gasification and steam production. Energy analysis and process heat integration proved a prospective approach for energy-efficient and sustainable hydrogen production from date seeds.  相似文献   
4.
High efficiency solar steam gasification of biomass is carried out in a prototype molten salt reactor for solar-only and solar-autothermal hybrid operation. Previous demonstration of the prototype 3-kW solar gasifier for steam gasification of cellulose at stoichiometric conditions demonstrated thermal efficiency of 44% during continuous operation at 1200 K. The present work expands the range of operating conditions to consider two challenges. Hybridization between solar and autothermal modes of operation is accomplished by adding oxygen directly to the reactor. Control of the H2:CO ratio of the product gas is accomplished through in-situ steam shifting. Hybridization stabilized temperatures for variations in radiative input as large as a 30% reduction in power, corresponding to conditions where both sensible and chemical heat demands for the process were fully met by exothermic heat release with no significant challenges. Peak efficiencies and carbon conversion values observed are 45% and 99.5% respectively. The resulting product gas stream composition was shifted from a hydrogen and carbon monoxide ratio of 1:1 with stoichiometric steam delivery to a ratio of 1.7:1 with steam at nine times the stoichiometric amount, only slightly lower than equilibrium predictions. The results demonstrate very favorable attributes for the molten salt reactor in a continuous fuel production process.  相似文献   
5.
《能源学会志》2020,93(4):1324-1331
The release mechanism of Ca during coal pyrolysis and char gasification in H2O, CO2 and their mixtures was studied. Sequential chemical extraction was used to determine the modes of occurrence of Ca in coal and char. The released Ca from coal pyrolysis and char gasification were captured and analyzed by activated carbon adsorption and X-ray photoelectron spectroscopy (XPS). Model compounds CaS and CaSO4 were adopted to further reveal the released form of Ca under different atmospheres. The results indicate that Ca in coal is mainly released as CaCl2 during the pyrolysis process, and the possible migration mechanism of Ca during pyrolysis was proposed. Ca in coal is mainly released in the form of CaCl2, CaCO3, and CaSO4 during the gasification, and Ca is released as CaCl2 under all conditions. In addition, Ca will be released as CaCO3 under CO2 atmosphere, as CaSO4 under H2O and H2O/CO2 atmospheres at 800 °C and 900 °C, released as CaSO4 under all conditions at 1000 °C. This is closely related to the formation of CaO2 intermediates during the gasification process.  相似文献   
6.
Recently, the methanol production has received a lot of attraction in the process industries due to its wide applications in the synthesis of many commercial chemicals and fuels. Most of the coal to methanol processes suffers from higher water consumption, greenhouse gas (GHG) emissions and lower yields. The aim of this study is to develop a novel energy efficient and economic viable process that may not only increase the methanol production capacity but also offers the less energy requirements with improved process economics. In this study, coal gasification process is sequentially integrated in the parallel design configuration with the natural gas reforming technology to enhance the heating value of the resulting syngas for methanol production. To achieve this aim, two case studies have been developed and compared in terms of overall process performance and economics. Case 1 represents the conventional coal to methanol process, whereas, case 2 represents the conceptual design of integrating the gasification and reforming technologies for enhanced methanol production. The process efficiencies calculated for case 1 and case 2 is 63.2% and 70.0%, respectively. It has been seen from results that the methanol production energy for case 1 and case 2 is 0.69 kg/W and 0.76 kg/W, respectively. In terms of process economics, the methanol production cost for case 1 and case 2 has been estimated as 250 €/tonne and 234 €/tonne, respectively. The comparative analysis showed that the case 2 design not only offers higher process performance but also enhances the process feasibility compared to the conventional coal based processes.  相似文献   
7.
Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation was assessed in a short-term soil incubation study and compared to the traditional practice of direct incorporation of cereal straw. The GBs were chemically and physically characterized to evaluate their potential to improve soil quality parameters. After 110 days of incubation, about 3% of the added GB carbon was respired as CO2, compared to 80% of the straw carbon added. The stability of GB was also confirmed by low H/C and O/C atomic ratios with lowest values for WGB (H/C 0.12 and O/C 0.10). The soil application of GBs exhibited a liming effect increasing the soil pH from ca 8 to 9. Results from scanning electron microscopy and BET analyses showed high porosity and specific surface area of both GBs, indicating a high potential to increase important soil quality parameters such as soil structure, nutrient and water retention, especially for WGB. These results seem promising regarding the possibility to combine an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements.  相似文献   
8.
Gasification is considered as a key technology for the use of biomass. In order to promote this technology in the future, advanced, cost-effective, and highly efficient gasification processes and systems are required. This paper provides a detailed review on new concepts in biomass gasification.Concepts for process integration and combination aim to enable higher process efficiencies, better gas quality and purity, and lower investment costs. The recently developed UNIQUE gasifier which integrates gasification, gas cleaning and conditioning in one reactor unit is an example for a promising process integration. Other interesting concepts combine pyrolysis and gasification or gasification and combustion in single controlled stages. An approach to improve the economic viability and sustainability of the utilization of biomass via gasification is the combined production of more than one product. Polygeneration strategies for the production of multiple energy products from biomass gasification syngas offer high efficiency and flexibility.  相似文献   
9.
Traditional fossil fuel overuse could lead to global warming and environmental pollution. As a renewable energy, biomass energy is a sustainable and low pollution carbon energy, which has a wide range of sources. Syngas production from biomass thermochemical conversion is a promising technology to realize effective utilization of the renewable energy. Syngas produced from gasification could be further converted into value-added chemicals via the method of Fischer-Tropsch synthesis. Syngas and CO2 methanation could transform renewable energy into feasible transport and high-density energy. However, tar formation and catalyst deactivation are the main problem during the biomass gasification and methanation. This review sheds light on the development of biomass gasification and syngas methanation. Firstly, we presented the common reactors and some other factors during gasification. Secondly, we provide a comprehensive introduction of the advanced active catalyst for gasification and syngas methanation. Finally, some representative large-scale and commercial plants and companies for biomass gasification were compared and discussed in details. Then the prospective developments in combination of gasification and methanation were concluded to give an outlook for biomass gasification and its downstream development.  相似文献   
10.
Ni/Al2O3 catalyst is the one of promising catalysts for enhancing H2 production from supercritical water gasification (SCWG) of biomass. However, due to carbon deposition, the deactivation of Ni/Al2O3 catalyst is still a serious issue. In this work, the effects of lanthanum (La) as promoter on the properties and catalytic performance of Ni/Al2O3 in SCWG of food waste were investigated. La promoted Ni/Al2O3 catalysts with different La loading content (3–15 wt%) were prepared via impregnation method. The catalysts were characterized using XRD, SEM, BET techniques. The SCWG experiments were carried out in a Hastelloy batch reactor in the operating temperature range of 420–480 °C, and evaluated based on H2 production. The stability of the catalysts was assessed by the amount of carbon deposition on catalyst surface and their catalytic activity after reuse cycles. The results showed that 9 wt% La promoter is the optimal loading as Ni/9La–Al2O3 catalyst performed best performance with the highest H2 yield of 8.03 mol/kg, and H2 mole fraction of 42.46% at 480 °C. La promoted Ni/Al2O3 catalysts have better anti-carbon deposition properties than bare Ni/Al2O3 catalyst, resulting in better gasification efficiency after reuse cycles. Ni/9La–Al2O3 catalyst showed high catalytic activity in SCWG of food waste and had good stability as it was still active for enhancing H2 production when used in SCWG for the third time, which indicated that La promoted Ni/Al2O3 catalysts are potential additive to improve the SCWG of food waste.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号