首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1538篇
  免费   19篇
  国内免费   49篇
电工技术   33篇
综合类   11篇
化学工业   258篇
金属工艺   235篇
机械仪表   61篇
建筑科学   5篇
矿业工程   5篇
能源动力   89篇
轻工业   160篇
水利工程   1篇
石油天然气   18篇
武器工业   2篇
无线电   111篇
一般工业技术   449篇
冶金工业   2篇
原子能技术   129篇
自动化技术   37篇
  2024年   2篇
  2023年   13篇
  2022年   16篇
  2021年   23篇
  2020年   28篇
  2019年   26篇
  2018年   34篇
  2017年   41篇
  2016年   37篇
  2015年   31篇
  2014年   66篇
  2013年   99篇
  2012年   106篇
  2011年   168篇
  2010年   136篇
  2009年   131篇
  2008年   107篇
  2007年   101篇
  2006年   94篇
  2005年   53篇
  2004年   37篇
  2003年   42篇
  2002年   36篇
  2001年   25篇
  2000年   25篇
  1999年   15篇
  1998年   22篇
  1997年   11篇
  1996年   8篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   9篇
  1991年   20篇
  1990年   4篇
  1989年   7篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1959年   1篇
排序方式: 共有1606条查询结果,搜索用时 93 毫秒
1.
《Ceramics International》2021,47(23):32969-32978
In this study, hydroxyapatite-based hydroxyapatite-wollastonite-boron nitride (HAp-Wo-BN) composite film was formed on the surface of Ti6Al4V by pulsed laser deposition (PLD). Based on a survey in scientific literature, it is presumed that this is the first time such a process is being undertaken. The wear and corrosion resistance of this film were analyzed comparatively in simulated body fluid (SBF) to simulate the human body environment. In the coating, HAp was used to form a bone-like layer, wollastonite was to enhance bone-tissue regeneration and BN was used for its bone-tissue healing and anti-bacterial properties. The results showed that the wear as well as the corrosion resistance of all samples after PLD treatment increased. Relatively the best wear resistance was achieved from boron nitride and wollastonite doped hydroxyapatite layers, where the best corrosion resistance was from the ones that consisted of only hydroxyapatite.  相似文献   
2.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
3.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
4.
《Ceramics International》2022,48(8):10921-10931
Coatings were obtained by vacuum electro-spark alloying (VESA), pulsed cathodic arc evaporation (PCAE), magnetron sputtering (MS) techniques and VESA-PCAE-MS hybrid technology using Cr3C2–NiAl electrodes. The structure of the coatings was analyzed using scanning and transmission electron microscopy, X-ray diffraction and energy-dispersive spectroscopy. Mechanical properties were determined by nanoindentation, while tribological properties were assessed using pin-on-disk tribometer. Corrosion resistance was estimated by voltammetry in 1 N H2SO4 and 3.5%NaCl solutions. Oxidation resistance tests were performed at 800°С in air. The VESA coating had the highest thickness, low friction coefficient and high wear resistance. PCAE coating demonstrated the highest hardness (24 GPa) and elastic recovery (59%), oxidation resistance and superior corrosion resistance both in 1 N H2SO4 (icorr = 70 μА/cm2) and 3.5%NaCl (icorr = 0.74 μА/cm2) solutions. The MS coating had average mechanical properties and low corrosion current density (71 μА/cm2) in 1 N H2SO4. Deposition of coatings using VESA-PCAE-MS hybrid technology led to an increase in corrosion and oxidation resistance at least by 1.5 times in comparison with the VESA coating.  相似文献   
5.
《Ceramics International》2021,47(24):33988-33996
Hafnia (HfO2, hafnium dioxide) is a wide band gap and high-κ material, and the metastable cubic hafnia has a much higher permittivity compared with the normal monoclinic hafnia. Here, we employ a one-step process, the pulsed plasma in liquid (PPL) method to synthesize two types of hafnia nanoparticles (NPs): one which is mainly in cubic phase (cubic: 81.7 at%, monoclinic: 18.3 at%) and the other which is in monoclinic phase. High-resolution transmission electron microscopy images showed that the particles were small (particle size ~3 nm). X-ray absorption fine structure analysis showed no chemical shifts, indicating that the synthetic hafnia NPs contained no oxygen vacancy. The synthetic hafnia NPs mainly in cubic phase showed a much higher relative permittivity than that of the commercial hafnia (monoclinic), and have a larger band gap than the synthetic monoclinic hafnia NPs.  相似文献   
6.
Damage of chicory tissue by combined electroporation and ohmic heating is studied for better solute extraction. Moderate (400–1000 V/cm) and high (10,000 V/cm) PEF treatments were applied varying pause duration between the trains of individual pulses. Ohmic heating was induced with increase of the number of trains N. Temperature dependence of tissue damage degree Z is evaluated for the different PEF intensities. With higher ohmic heating, chicory tissue is faster and better damaged. Electric field strengths of 600–800 V/cm combined with ohmic heating permit to enhance noticeably the solute extraction from chicory tissue. The solute diffusivity D for the different PEF treatments, is nearly the same for same values of Z. Chicory tissue treated to the same damage degree (Z = 0.8–1.0) using different PEF conditions (800, 1000 and 10,000 V/cm) has nearly the same diffusivity.Combined electroporation/ohmic heating pretreatment by moderate PEF (400–1000 V/cm) presents an interesting alterative for the treatment of high product throughputs (e.g. in the case of inulin production from chicory).  相似文献   
7.
In recent years, porous silicon (PSi) has attracted a great deal of attention for sensing applications. However, the high reactivity of PSi surfaces causes serious problems of stability. In this work, we developed new thin films that can serve as stabilizer of PSi for CO2 gas sensors development. PSi surface was coated with carbon nitride (CNx) film which is one of the most important interfering to stabilize the PSi layer. CNx film was deposited by pulsed laser ablation. The effect of CO2 gas on the sensor response was investigated for different polarization voltages. The electrical properties of (Al/CNx/PSi/Si) structure were modified in the presence of the gas. The device shows a high sensitivity against CO2 gas. Furthermore, the current variation of the sensor as a function of time has been investigated. The results show that the Al/CNx/PSi/Si structure becomes stable after the first two weeks.  相似文献   
8.
This paper summarizes the basics of pulsed thermal nondestructive testing (TNDT) including theoretical solutions, data processing algorithms and practical implementation. Typical defects are discussed along with 1D analytical and multi-dimensional numerical solutions. Special emphasis is focused on defect characterization by the use of inverse solutions. A list of TNDT terms is provided. Applications of active TNDT, mainly in the aerospace industry, are discussed briefly, and some trends in the further development of this technique are described.  相似文献   
9.
《Ceramics International》2020,46(17):26767-26776
This paper presents a comprehensive study on the various hurdles and solutions in the realization of phase pure, pinhole-free and crack-free, 0.65PMN-0.35PT/LSCO/Pt/TiO2/SiO2/Si heterostructures using pulsed laser deposition. A few major inquiries were i) effect of excess PbO in the target, ii) modulation of deposition and annealing temperatures for the growth of LSCO buffer layer, iii) thickness of the buffer layer iv) effect of the flow of oxygen in the chamber during and after deposition and v) the annealing conditions; on the phase formation, morphology and leakage response demonstrated by the films. Ferroelectric response parameters viz. Psat = 47.7 μC/cm2, Pr = 20.03 μC/cm2, EC = 62.03 kV/cm and absolute area = 21460 units attest the quality of the grown film.  相似文献   
10.
The wettability of 3 mol% Y2O3-stabilized ZrO2 (3YSZ) by molten Cu can be greatly improved by applying pulsed currents at 1373 K. The improvement was closely related to current polarity and influenced by duty cycle and frequency. When the Cu/3YSZ interface was under cathodic condition, the wettability was mainly improved by the formation of substoichiometric ZrO2-δ and metallic Zr at the interface. Increasing duty cycle caused the interface to change from forming protrusions to creating depression. Decreasing frequency further deepened the depression. In the opposite polarity, the adsorption and enrichment of oxygen reduced the solid-liquid and liquid-vacuum interfacial energies, thus improving the wettability. Only bubbles formed at the interface. The larger the duty cycle, the more rapidly bubbles formed and escaped. The effect of frequency at this polarity was weak. Overall, this work provides a novel and effective strategy for tailoring the wettability and interfacial chemistry between zirconia and metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号