首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2763篇
  免费   391篇
  国内免费   137篇
电工技术   19篇
技术理论   1篇
综合类   240篇
化学工业   1333篇
金属工艺   148篇
机械仪表   15篇
建筑科学   87篇
矿业工程   37篇
能源动力   91篇
轻工业   81篇
水利工程   11篇
石油天然气   71篇
武器工业   5篇
无线电   201篇
一般工业技术   867篇
冶金工业   75篇
原子能技术   2篇
自动化技术   7篇
  2024年   4篇
  2023年   119篇
  2022年   96篇
  2021年   147篇
  2020年   172篇
  2019年   145篇
  2018年   125篇
  2017年   130篇
  2016年   140篇
  2015年   131篇
  2014年   135篇
  2013年   139篇
  2012年   209篇
  2011年   249篇
  2010年   156篇
  2009年   170篇
  2008年   135篇
  2007年   215篇
  2006年   176篇
  2005年   176篇
  2004年   116篇
  2003年   66篇
  2002年   53篇
  2001年   31篇
  2000年   23篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1980年   1篇
排序方式: 共有3291条查询结果,搜索用时 218 毫秒
1.
Designing a semiconductor-based heterostructure photocatalyst for achieving the efficient separation of photogenerated electron-hole pairs is highly important for enhancing H2 releasing photocatalysis. Here, a new class of Ni1−xCoxSe2–C/ZnIn2S4 hierarchical nanocages with abundant and compact ZnIn2S4 nanosheets/Ni1−xCoxSe2C nanosheets 2D/2D hetero–interfaces, is designed and synthesized. The constructed heterostructure photocatalyst exposes rich hetero-junctions, supplying the broad and short transfer paths for charge carriers. The close contacts of these two kinds of nanosheets induce a strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C, improving the separation and transfer of photo-generated electron-hole pairs. As a consequence, the distinctive Ni1−xCoxSe2 C/ZnIn2S4 hierarchical nanocages without using additional noble-metal cocatalysts, display remarkable H2-relaesing photocatalytic activity with a rate of 5.10 mmol g−1 h−1 under visible light irradiation, which is 6.2 and 30 times higher than those of fresh ZnIn2S4 nanosheets and bare Ni1−xCoxSe2 C nanocages, respectively. Spectroscopic characterizations and theory calculations reveal that the strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C 2D/2D hetero-interfaces can powerfully promote the separation of photo-generated charge carriers and the electrons transfer from ZnIn2S4 to Ni1−xCoxSe2 C.  相似文献   
2.
In this study the constructional modification of Graphitic carbon nitride nanosheet (GCN-ns) has been made with the aid of ZnCr layered double hydroxide (ZC-LDH) in a unique 2D-2D structure to enhance its visible light absorption. Optical and morphological study presents successful incorporation of ZC-LDH on the surface of GCN-ns. Through adjusting of GCN-ns by ZC-LDH lower recombination rate of e?/h+ pairs, longer lifetimes and an increase in contamination reduction was brought out. The binary nanocomposite was employed to effectively degrade Rhodamine B under UV/vis light irradiation. The improvement in photocatalytic abilities was proven to be related to in situ self-production of H2O2 on GCN-ns/ZC-LDH surface by Xe light irradiation which in return accounts for additional hydroxide radical generation. Radical quenching experiments specified the main active species involved while the consequent step-scheme (S-scheme) charge transfer mechanism was proposed.  相似文献   
3.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
4.
Undesired photoelectronic dormancy through active species decay is adverse to photoactivity enhancement. An insufficient extrinsic driving force leads to ultrafast deep charge trapping and photoactive species depopulation in carbon nitride (g-C3N4). Excitation of shallow trapping in g-C3N4 with long-lived excited states opens up the possibility of pursuing high-efficiency photocatalysis. Herein, a near-field-assisted model is constructed consisting of an In2O3-cube/g-C3N4 heterojunction associated with ultrafast photodynamic coupling. This In2O3-cube-induced near-field assistance system provides catalytic “hot areas”, efficiently enhances the lifetimes of excited states and shallow trapping in g-C3N4 and this favors an increased active species density. Optical simulations combined with time-resolved transient absorption spectroscopy shows there is a built-in charge transfer and the active species lifetimes are longer in the In2O3-cube/g-C3N4 hybrid. Besides these properties, the estimated overpotential and interfacial kinetics of the In2O3-cube/g-C3N4 hybrid co-promotes the liquid phase reaction and also helps in boosting the photocatalytic performance. The photocatalytic results exhibit a tremendous improvement (34-fold) for visible-light-driven hydrogen production. Near-field-assisted long-lived active species and the influences of trap states is a novel finding for enhancing (g-C3N4)-based photocatalytic performance.  相似文献   
5.
采用分子组装的方法,以硅藻土为基底制备TiO_2/硅藻土、TiO_2/FeOOH/硅藻土纳米复合材料,通过UV-Vis、TEM方法对材料进行表征,以甲基橙溶液为目标降解物探究纳米复合材料的光催化性能,结果表明,基底制备TiO_2/硅藻土、TiO_2/FeOOH/硅藻土纳米复合材料对甲基橙均有不错的降解率,其中TiO_2/FeOOH/硅藻土纳米复合材料降解率达到67.16%。  相似文献   
6.
《Ceramics International》2021,47(22):31073-31083
Pluronic 31R1 surfactant and MCM-41 silica were used to fabricate mesoporous Ag2O/g-C3N4 heterostructures with improved surface areas. The fabricated mesoporous nanocomposite was used to photo oxidize ciprofloxacin. The TEM images of Ag2O/g-C3N4 indicated a uniform dispersion of spherical approximately 4-nm Ag2O nanoparticles on g-C3N4. The mesoporous 0.9% Ag2O@g-C3N4 heterostructure exhibited 100% efficiency in ciprofloxacin oxidation within 60 min when compared with the 25% efficiency in 120 min of pure mesoporous Ag2O and 10% efficiency in 120 min of pure g-C3N4. The highest ciprofloxacin oxidation efficiency achieved was 100%, which was four and ten times better than those of Ag2O and g-C3N4, respectively. This superior performance of the mesoporous Ag2O/g-C3N4 was attributed to the high dispersion of nano-sized mesoporous Ag2O particles on the g-C3N4 surface, narrow bandgap, and significantly high surface areas. The powerful interaction between Ag2O and g-C3N4 ensured robust durability of Ag2O/g-C3N4 heterostructures, which is evident in the fact that five recycling trials of the photocatalyst rendered a minimal loss of efficiency.  相似文献   
7.
Covalent triazine frameworks (CTFs) have been recently employed for visible light-driven photocatalysis due to their unique optical and electronic properties. However, the usually highly hydrophobic nature of CTFs, which originates from their overall aromatic backbone, leads to limitations of CTFs for applications in aqueous media. In this study, we aim to extend the range of the application media of CTFs and design hybrid material of a CTF and mesoporous silica (SBA-15) for efficient photocatalysis in aqueous medium. A thiophene-containing CTF was directly synthesized in mesopores of SBA-15. Due to the high surface area and the added hydrophilic properties by silica, the hybrid material demonstrated excellent adsorption of organic molecules in water. This leads not only to high photocatalytic performance of the hybrid material for the degradation of organic dyes in water, but also for efficient photocatalysis in solvent-free and solid state. Furthermore, the reusability, stability and easy recovery of the hybrid material offers promising metal-free heterogeneous photocatalyst for broader applications in different reaction media.  相似文献   
8.
A facile, one-pot, solvothermal synthesis of MoS2 microflowers (S1) and the heterostructures MoS2/g-C3N4 with varying ratios of 1:1 (S2), 1:2 (S3) and 1:3 (S4) exhibiting enhanced visible-light-assisted H2 generation by water splitting has been reported. The compounds were thoroughly characterized by PXRD, FESEM, HRTEM, EDS, UV–vis and XPS techniques. FESEM and HRTEM analyses showed the presence of microflowers composed of nano-sized petals in case of pure MoS2 (S1), while the MoS2 microflowers covered with g-C3N4 nanosheets in case of MoS2/g-C3N4 heterostructure, S4. XPS analysis of S2 showed the presence of 2H phase of MoS2 with g-C3N4. The Eosin-Y/dye-sensitized visible-light-assisted photocatalytic investigation of the samples in the absence of any noble metal co-catalyst revealed very good water splitting activity of MoS2/g-C3N4 heterostructure, S2 with hydrogen generation rate of 1787 μmol h−1g−1 which is about 6 and 40 times higher than pure MoS2 and g-C3N4 respectively. The relatively higher catalytic activity of the heterostructure, S2 has been ascribed to the efficient spatial separation of photo-induced charge carriers owing to the synergistic interaction between MoS2 and g-C3N4. A possible mechanism for the Eosin-Y-sensitized photocatalytic H2 generation activity of MoS2/g-C3N4 heterostructures has also been presented. The enhanced activity of S2 was further supported by fluorescence measurements. Thus, the present study highlights the importance of non-noble metal based MoS2/g-C3N4 heterojunction photocatalysts for efficient visible-light-driven H2 production from water splitting.  相似文献   
9.
10.
为研究碱改性前后复合纳米纤维膜的光催化降解性能,首先利用静电纺丝技术制备聚丙烯腈/醋酸纤维素/二氧化钛(PAN/CA/TiO2)复合纳米纤维膜,依次用0.05、0.10 mol/L的氢氧化钠溶液对其进行碱处理,制得聚丙烯腈/再生纤维素/二氧化钛(PAN/RC/TiO2)复合纳米纤维膜,并应用于染料废水处理。借助扫描电子显微镜、傅里叶红外光谱仪及接触角测量仪等手段表征了复合纳米纤维膜的结构与亲水性;同时研究了复合纳米纤维膜的力学与光催化降解性能。结果表明:经碱处理后,复合纳米纤维膜的静态接触角由125.30°减小到10.20°,亲水性能得到很大的改善;PAN/RC/TiO2复合纳米纤维膜对亚甲基蓝(MB)溶液的降解率达到91.2%,而空白对照样对MB溶液的降解率仅为10.1%,且重复使用3次后,复合纳米纤维膜对MB溶液的降解率仍达74.7%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号