首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   3篇
电工技术   1篇
综合类   3篇
化学工业   67篇
轻工业   3篇
无线电   1篇
一般工业技术   10篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1995年   1篇
  1992年   3篇
  1989年   1篇
  1985年   3篇
  1984年   3篇
  1982年   3篇
排序方式: 共有85条查询结果,搜索用时 171 毫秒
1.
Herein, phloroglucinol tristearate (PhgTS) was used to study the crystallization process due to its unique symmetric structure containing a benzene ring and three aliphatic chains. Spherulites of crystallized PhgTS from four solvents under diverse conditions were analyzed in detail and their formation process was studied. Maltese cross is shown by PhgTS spherulites obtained from aprotic solvents via polarized optical microscopy. In comparison, no Maltese cross can be observed from branch-like crystals formed from protic solvents. Independent on the microscaled morphology, lamellae were found to be the basic blocks constructing both PhgTS spherulites and branch-like crystals, which were formed predominantly by stacked PhgTS molecules. Although differential characters of the solvents did not affect the formation of lamellas, the solvents played a crucial role in the formation of self-assembled microscaled morphologies. In particular, the morphologies of spherulites were strongly affected by the concentration of PhgTS solutions, surrounding temperature and evaporation rate of solvents. Generally, a higher concentration of PhgTS led to more homogeneous spherulites, a lower evaporation rate resulted in more compact spherulites, and a higher surrounding temperature generated preferentially more ring-banded spherulites of PhgTS.  相似文献   
2.
Nacre's biomineralization process and its self‐organizing brick‐and‐mortar crystalline microstructure have inspired many researchers to develop new materials derived from the natural world. In our study, we took a novel approach to two‐dimensional (2‐D) crystallization. That is, we applied the biomineralization self‐organizational principle that exists in natural materials to a biopolymer (polylactide). The CO2‐induced crystallization of poly(d ‐lactide), with its unique diffusion‐controlled crystallization mechanism, tends to produce distinct 2‐D spherulitic structures. We found that these 2‐D spherulites were self‐organizing in nature, and that they created a stack of 2‐D spherulitic structures. These crystalline microstructures, with their intervening amorphous phase, were foamed in situ due to the CO2‐induced crystallization self‐exclusion phenomenon. We compared the resultant crystalline structure with nacre's brick‐and‐mortar crystalline microstructure to confirm the biomimetic principle of self‐organization. To the best of our knowledge, this is the first time that a biopolymer has been crystallized in a 2‐D manner in a way that resembles nature's biomineralization process. The hierarchical crystalline microstructure is morphologically similar to that of nacre biomaterials. This novel crystallization technique is simple, absolutely non‐toxic and works swiftly to produce a brick‐and‐mortar crystalline microstructure with a high degree of order. © 2017 Society of Chemical Industry  相似文献   
3.
The activity of isotactic polypropylene (iPP) nucleating additives during shear flow of composite materials is still not entirely explained. In current work the sol-gel method was employed to synthesize MgO·SiO2 filler, surface-modified with trivalent lanthanum. The crystallization of commercial iPP in the presence of 0.5% by weight La3+ modified or unmodified silicates was analyzed. The wide angle X-ray scattering analysis proved that the presence of even small amount of filler influences significantly on supermolecular structure of iPP. The results of microscope observations confirmed that the lanthanum-modified filler shows the nucleating ability for iPP. In that case a significant reduction of crystallization induction time was noticed. The investigation of iPP crystallization in composites after shear treatment confirmed that the increase of shear rate reduces the nucleating ability of additives. Moreover, the flow of filler particles during shearing may impede the shear-induced crystallization phenomenon.  相似文献   
4.
Hexa‐armed star‐shaped poly(ε‐caprolactone)‐block‐poly(L ‐lactide) (6sPCL‐b‐PLLA) with dipentaerythritol core were synthesized by a two‐step ring‐opening polymerization. GPC and 1H NMR data demonstrate that the polymerization courses are under control. The molecular weight of 6sPCLs and 6sPCL‐b‐PLLAs increases with increasing molar ratio of monomer to initiator, and the molecular weight distribution is in the range of 1.03–1.10. The investigation of the melting and crystallization demonstrated that the values of crystallization temperature (Tc), melting temperature (Tm), and the degree of crystallinity (Xc) of PLLA blocks are increased with the chain length increase of PLLA in the 6sPCL‐b‐PLLA copolymers. On the contrary, the crystallization of PCL blocks dominates when the chain length of PLLA is too short. According to the results of polarized optical micrographs, both the spherulitic growth rate (G) and the spherulitic morphology are affected by the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
5.
Growth rates of spherulites were measured in poly(p-phenylene sulphide) crystallized from the melt and the quenched glass over the temperature range 100°C–280°C, possibly the most extensive overall range yet reported for any polymer and, as such, most propitious for study of régime III crystallization. For a medium M.wt. polymer, a régime II → III transition was obtained at 208°C using values of transport parameters common to many polymers (U1 = 1400 cal mol?1, T ? Tg = 30°C) together with experimentally determined values of T0m(315°C) and Tg(92°C). Under these conditions, the régime III/II slope ratio was found to be 2.07 (i.e. only 3.5% higher than predicted by régime theory), and reasonable estimates of surface free energies and of the work of chain folding were obtained. Other choices of the transport terms, including WLF and zero values, did not allow successful kinetic analyses. Although a régime I → II transition is predicted to occur at the high-temperature end of our growth-rate data, we found no experimental evidence for it. For a low M.wt. polymer, our analysis showed that régime III kinetics is obeyed at low temperatures, while at higher ones there is a continuous departure from that behaviour without, however, full attainment of régime II kinetics.  相似文献   
6.
The melting behavior and crystallization kinetics of poly(trimethylene terephthalate) (PTT)/stainless steel fiber (SSF) composites were investigated with differential scanning calorimetry. The morphology was studied with scanning electron microscopy and polarized optical microscopy. Differential scanning calorimetry analysis revealed that the crystallization temperature increased by 27°C with the addition of 1 vol % SSF to the matrix. The Avrami exponents, analyzed in isothermal crystallization kinetics, were determined to be 2–3 for both neat PTT and PTT/SSF composites. SSF, as a nucleating agent in the composites, greatly increased the crystallization rate. The activation energies of the composites were obviously lower than that of pure PTT, and this indicated much easier crystallization of the composites. All these samples exhibited banded spherulites, and the spherulite size gradually decreased with the SSF loading increasing. Subsequent melting behaviors revealed that all of these samples, especially of the composites, exhibited triple melting peaks at all crystallization temperatures studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
7.
The effect of natural fibers (vetiver grass and rossells) on quiescent crystallization of polypropylene (PP) composites was analyzed in this study. Also, equilibrium melting temperature (T) of the composites was elucidated. Natural fiber‐PP composites showed lower T when compared to neat PP. Thermal analysis was performed via differential scanning calorimeter to study the crystallization kinetics. Natural fiber‐PP composites exhibited higher rate of crystallization than that of neat PP. Furthermore, spherulitic growth rate and transcrystallinity of the composites were investigated under a polarized light optical microscope. It was found that the growth rates of the composites were lower than that of neat PP. The spherulitic growth rates combined with the crystallization rates were used to calculate number of effective nuclei. It was shown that the number of effective nuclei of the composites was higher than that of neat PP. This suggested that natural fibers could act as a nucleating agent in the composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
8.
Spherical and tube‐like (TL) silica nanoparticles were melt blended with an isotactic polypropylene (PP) matrix and its effect on the isothermal spherulite growth rate was analyzed by polarized optical microscope. The addition of low amount (≈1 wt.‐%) of either 15 nm spherical or TL particles raises the spherulite growth rate and the nucleation density of spherulites. Samples prepared with silica spheres of 80 nm otherwise do not show any change in the crystallization behavior. By adding a compatibilizer, both the nucleation density and the spherulite growth rate of the pure polymer are increased. Noteworthy, although the nanoparticles do not further increase the nucleation density of the PP/compatibilizer blend, independent of its form and size, they cause a decrease in its spherulite growth rate.

  相似文献   

9.
Polypropylene (PP) was blended with a linear low-density polyethylene (LLDPE, containing 5% hexene comonomer) over a composition range of 10–90% of PP. The crystallization and morphology of the PP–LLDPE blends were studied by differential scanning calorimetry (DSC), polarized optical microscopy with a hot stage (HSOM), and scanning electron microscopy (SEM). In particular, the isothermal crystallization of PP in molten LLDPE was investigated. It was observed that the crystallization and melting behavior of PP and LLDPE changed in the blends, indicating that there was some degree of miscibility between the PP and the LLDPE. A depression of the equilibrium melting temperature (T) of PP in the blends with no more than 15% of PP confirmed that PP was miscible with LLDPE at and below 15% of PP. In addition, a drastic decrease in T from the 25% PP blend to the 20% blend led us to conclude that the miscible behavior between PP and LLDPE became favorable at a PP concentration of 20%. The optical microscopic images showed that, in the blends with 10 and 15% of PP, the PP crystallized as open-armed diffuse spherulites, similar to those in the miscible blends. In contrast, the PP crystallized in a phase-separated matrix or droplets with more than 25% of PP, when obvious phase separation occurred. The SEM image revealed that the PP lamella was able to penetrate the PP and LLDPE phase boundary and grow in the LLDPE phase. The above results displayed that the PP dissolved in the LLDPE, and, particularly, when the PP concentration was below 20%, the dissolution was substantial. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 628–639, 2001  相似文献   
10.
The spherulitic morphology of pure poly(L ‐lactide) (PLLA) was investigated with polarized optical microscopy as a function of the crystallization temperature and molecular weight. After being melted at 210°C for 3 min, samples were cooled quickly to designated temperatures for isothermal crystallization. It was shown for the first time that a clear banding‐to‐nonbanding morphological transition took place at a critical temperature for PLLA with a number‐average molecular weight of 86,000. With the increasing molecular weight of the material, the spherulite growth rates decreased notably, and the band spacing decreased significantly. On the basis of the main‐chain chirality in PLLA and the observation of a nonbanded spherulitic morphology in a certain temperature region, it was suggested that the crystallization temperature might have an effect on the relationship between the sense of lamellar twisting and the main‐chain chiral structure in PLLA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号