首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3370篇
  免费   96篇
  国内免费   68篇
电工技术   112篇
综合类   94篇
化学工业   813篇
金属工艺   394篇
机械仪表   64篇
建筑科学   61篇
矿业工程   199篇
能源动力   170篇
轻工业   126篇
水利工程   2篇
石油天然气   19篇
武器工业   3篇
无线电   221篇
一般工业技术   846篇
冶金工业   325篇
原子能技术   20篇
自动化技术   65篇
  2024年   4篇
  2023年   34篇
  2022年   40篇
  2021年   55篇
  2020年   58篇
  2019年   57篇
  2018年   55篇
  2017年   81篇
  2016年   68篇
  2015年   56篇
  2014年   155篇
  2013年   160篇
  2012年   181篇
  2011年   351篇
  2010年   239篇
  2009年   242篇
  2008年   203篇
  2007年   238篇
  2006年   210篇
  2005年   138篇
  2004年   155篇
  2003年   124篇
  2002年   110篇
  2001年   55篇
  2000年   73篇
  1999年   74篇
  1998年   58篇
  1997年   35篇
  1996年   43篇
  1995年   34篇
  1994年   30篇
  1993年   24篇
  1992年   26篇
  1991年   16篇
  1990年   15篇
  1989年   8篇
  1988年   8篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有3534条查询结果,搜索用时 203 毫秒
1.
Hot-dip galvanizing is a standard technology to produce coated steel strips. The primary objective of the galvanizing process is to establish a homogeneous zinc layer with a defined thickness. One condition to achieve this objective is a uniform transverse distance between the strip and the gas wiping dies, which blow off excessive liquid zinc. Therefore, a flat strip profile at the gas wiping dies is required. However, strips processed in such plants often exhibit residual curvatures which entail unknown flatness defects of the strip. Such flatness defects cause non-uniform air gaps and hence an inhomogeneous zinc coating thickness. Modern hot-dip galvanizing lines often use electromagnets to control the transverse strip profile near the gas wiping dies. Typically, the control algorithms ensure a flat strip profile at the electromagnets because the sensors for the transverse strip displacement are also located at this position and it is unfeasible to mount displacement sensors directly at the gas wiping dies. This brings along that in general a flatness defect remains at the gas wiping dies, which in turn entails a suboptimal coating.In this paper, a model-based method for a feedforward control of the strip profile at the position of the gas wiping dies is developed. This method is based on a plate model of the axially moving strip that takes into account the flatness defects in the strip. First, an estimator of the flatness defects is developed and validated for various test strips and settings of the plant. Using the validated mathematical model, a simulation study is performed to compare the state-of-the-art control approach (flat strip profile at the electromagnets) with the optimization-based feedforward controller (flat strip profile at the gas wiping dies) proposed in this paper. Moreover, the influence of the distance between the gas wiping dies and the electromagnets is investigated in detail.  相似文献   
2.
Aluminum-doped zinc oxide (ZnO:Al, AZO) electrodes were covered with very thin (∼6 nm) Zn1−xMgxO:Al (AMZO) layers grown by atomic layer deposition. They were tested as hole blocking/electron injecting contacts to organic semiconductors. Depending on the ALD growth conditions, the magnesium content at the film surface varied from x = 0 to x = 0.6. Magnesium was present only at the ZnO:Al surface and subsurface regions and did not diffuse into deeper parts of the layer. The work function of the AZO/AMZO (x = 0.3) film was 3.4 eV (based on the ultraviolet photoelectron spectroscopy). To investigate carrier injection properties of such contacts, single layer organic structures with either pentacene or 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine layers were prepared. Deposition of the AMZO layers with x = 0.3 resulted in a decrease of the reverse currents by 1–2 orders of magnitude and an improvement of the diode rectification. The AMZO layer improved hole blocking/electron injecting properties of the AZO electrodes. The analysis of the current-voltage characteristics by a differential approach revealed a richer injection and recombination mechanisms in the structures containing the additional AMZO layer. Among those mechanisms, monomolecular, bimolecular and superhigh injection were identified.  相似文献   
3.
Undoped and fluorine doped ZnO thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction (SILAR) technique and then annealed at 350 °C in vacuum ambience. The F doping level was varied from 0 to 15 at% in steps of 5 at%. The XRD analysis showed that all the films are polycrystalline with hexagonal wurtzite structure and preferentially oriented along the (002) plane. Crystallite sizes were found to increase when 5 at% of F is doped and then decreased with further doping. It was seen from the SEM images that the doping causes remarkable changes in the surface morphology and the annealing treatment results in well-defined grains with an improvement in the grain size irrespective of doping level. All the films exhibit good transparency (>70%) after vacuum annealing. Electrical resistivity of the film was found to be minimum (1.32×10−3 Ω cm) when the fluorine doping level was 5 at%.  相似文献   
4.
《Ceramics International》2020,46(8):11689-11697
In this research, vapor phase transport (VPT) was introduced as a facile, inexpensive method to produce ZnO micro/nanostructures from various Zn sources such as pure Zn and alpha brass pre-alloyed powders (Cu–20Zn and Cu–28Zn) at different processing temperatures of 930 °C–1050 °C. Simultaneous thermal analysis (STA) was carried out to investigate Zn evaporation and ZnO micro/nanostructure formation. STA results showed an exothermic peck at 711 °C and 728 °C for Cu–20Zn and Cu–28Zn, respectively, due to oxidation of the evaporated Zn element and formation of ZnO micro/nanostructures. X-ray diffraction results showed that high purity ZnO micro/nanostructures were successfully synthesized via VPT process and the crystallite size was increased from ~60 nm to ~100 nm with increasing processing temperature. Field emission scanning electron microscopy observations showed morphology (e.g. rods, column, tetrapods, and combs) and size of the synthesized micro/nanostructures were dependent on the Zn sources and processing temperature, in which average diameter of the synthesized ZnO structures was increased with increasing the processing temperature. The smallest (98 nm) and largest (603 nm) average diameters of synthesized ZnO micro/nanostructures were attained from the pure Zn and Cu–28Zn brass powders at 930 °C and 1050 °C, respectively.  相似文献   
5.
An efficient method for preparation of semiconductor quantum rod films for robust lasing in a cylindrical microcavity is reported. A capillary tube, serving as the laser cavity, is filled with a solution of nanocrystals and irradiated with a series of intense nanosecond laser pulses to produce a nanocrystal film on the capillary surface. The films exhibit intense room‐temperature lasing in whispering‐gallery modes that develop at the film–capillary interface as corroborated from the spacing detected for the lasing modes. Good lasing stability is observed at moderate pump powers. The method was applied successfully to several quantum‐rod samples of various sizes.  相似文献   
6.
7.
The c-axis preferred orientation of ZnO film is the most important factor for its successful application in piezoelectric devices. The effects of surface roughness of the substrate on the c-axis preferred orientation of ZnO thin films, deposited by radio frequency magnetron sputtering, were investigated. During sputtering, the oxygen content in the argon environment used was varied from 0 to 70% at a total sputtering pressure of 10 mTorr. Very smooth Si, smooth evaporated Au/Si, smooth evaporated-Al/Si, and rough sputtered-Al/Si were used as substrates. Their r.m.s. roughnesses, as measured by atomic force microscopy, were 1.27, 17.1, 21.1 and 65-118 Å, respectively. The crystalline structure and the angular spread of the (0 0* 2) plane normal to the ZnO films were determined using X-ray diffraction and X-ray rocking curves, respectively. The crystallinity and the preferred c-axis orientation of the ZnO films were strongly dependent on the surface roughness of the substrates rather than on the oxygen content of the working environment or on the chemical nature of the substrate.  相似文献   
8.
高质量ZnO薄膜的退火性质研究   总被引:3,自引:0,他引:3  
在LP-MOCVD中,我们利用Zn(C2H5)2作Zn源,CO2作氧源,在(0002)蓝宝石衬底上成功制备出皮c轴取向高度一致的ZnO薄膜,并对其进行500℃-800℃四个不同温度的退火。利用XRD、吸收谱、光致发光谱和AFM等手段研究了退火对ZnO晶体质量和光学性质的影响。退火后,(0002)ZnO的XRD衍射峰强度显著增强,c轴晶格常数变小,同时(0002)ZnOX射红衍射峰半高宽不断减小表明晶粒逐渐增大,这与AFM观察结果较一致。由透射谱拟合得到的光学带隙退火后变小,PL谱的带边发射则加强,并出现红移,蓝带发光被有效抑制,表明ZnO薄膜的质量得到提高。  相似文献   
9.
Atmospheric corrosion of reference metals in Antarctic sites   总被引:1,自引:0,他引:1  
This paper presents the results obtained at three Antarctic test sites participating in the “Ibero-American Map of Atmospheric Corrosiveness” (MICAT), a project on atmospheric corrosion carried out during the period 1988–1994 at some 70 sites distributed across 12 countries of the Latin-American region, Spain and Portugal. The three Antarctic sites are located near the coastline.The singular climatic characteristics of Antarctic regions are related with the purity of the air, the absence of rainfall and the formation of ice on the metallic surface during an important part of the exposure time. However, electrochemical activity is possible below ice layers. This situation affects the structure and morphology of corrosion product films and the resulting corrosion rates of metallic surfaces.  相似文献   
10.
锌电积的节电探讨   总被引:1,自引:0,他引:1  
分析厂影响锌电积电能消耗的因素,提出了锌电积的节电对策与展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号