首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
原子能技术   8篇
  2011年   1篇
  2010年   1篇
  2007年   3篇
  2006年   1篇
  1998年   2篇
排序方式: 共有8条查询结果,搜索用时 421 毫秒
1
1.
Stress corrosion cracks have been discovered in Group Distribution Headers (GDH) at the Ignalina and Chernobyl Nuclear Power Plants. This increases the probability that a guillotine pipe break can occur that creates a whipping pipe (GDH) with the potential to damage surrounding structures—i.e. adjacent GDH and its attached piping or adjacent reinforced concrete compartment wall. The GDH is the most important component for reactor safety in case of an accident. Emergency Core Cooling System (ECCS) piping is connected to the GDH piping such that, during an accident, coolant passes from the ECSS into the GDH.Presented in this paper is the transient analysis of a Group Distribution Header following a guillotine break at the blind end of the header. Using a very conservative force loading function, the transient response of a whipping RBMK-1500 GDH along with neighboring concrete walls and pipelines is obtained using finite element methodology.The results of the study, assuming that the impacted GDH does not suffer stress corrosion cracking, indicate that the structural integrity of the compartment should be maintained and failure should not propagate from GDH to GDH.  相似文献   
2.
In this paper, an attempt has been made to systematically organize the research investigations conducted on clad tube failure, so far. Before presenting the review on the clad failure studies, an introduction to different clad materials has been added, in which the effect of alloying elements on the material properties have been presented. The literature on clad failure has been broadly categorized under the headings LOCA and RIA. The failure mechanisms like creep, corrosion and pellet-clad interaction have been discussed in details. Each subsection of the review has been provided with summary table, in which the studies are arranged in the chronological order. A small section on acceptance criteria for ECCS has also been included. The last section of the review has been dedicated to the core-degradation phenomena.  相似文献   
3.
The Ignalina NPP has a pressure suppression type of confinement, which is referred to as the accident localization system (ALS). The ALS prevents the release of the radioactive material from the NPP to the environment during a loss-of-coolant accident (LOCA). Ten water pools are located in the two ALS towers (five pools in each tower), which separate the dry well from the wet well. These water pools condense the accident-generated steam and prevent high overpressures in the compartments.The steam distribution device (SDD), with the vertical vent pipes (nozzles) that are inserted under the water of the condensing pools, connects the dry well and the wet well. In case of an accident, these components must be capable of withstanding the dynamic loads generated by a LOCA for successful pressure suppression function.This paper presents the transient analysis of the SDD and their connections to the vertical steam corridors following a LOCA. A thermo-hydraulic analysis of the SDD was performed using the state-of-the-art COCOSYS code to determine pressure and temperature histories resulting from a LOCA. The finite element code NEPTUNE was used to evaluate the structural integrity of the SDD and its supporting reinforced concrete wall. Results show that, although portions of the SDD undergo plastic response and the outside surface of the vertical steam corridor reinforced concrete wall cracks, the structural integrity of the SDD and wall are maintained during a LOCA.  相似文献   
4.
This paper presents the analysis of experimental data and calculational relationships for heat the transfer crisis in LWR rod bundle with closed bottom. A new relationship for critical heat flux prediction in the rod bundle with closed bottom based on the improved drift model is described. The comparison of critical heat flux values given by different correlations (including Groeneveld's algorithm used in RELAP5/MOD3.1 Code) and those obtained from the tests in the wide range of regime and geometric parameters is presented.  相似文献   
5.
The analysis of experimental data and results of calculations for heat transfer crisis in heated channels under low upward coolant mass flux densities is presented. This analysis allows the determination of the basic features of the boiling crisis phenomenon. It is shown that the methods currently used for critical heat flux (CHF) prediction have insufficient accuracy in the given range of parameters. A new relationship for the CHF calculation is presented. It should be used for the water–water energy reactor (WWER) and uran–graphite channel reactor—Chernobyl-type (RBMK) rod bundles, and is verified by the test data. The comparison of results obtained by a new CHF correlation and the relationship used in RELAP5/MOD3.1 Code is presented. It is shown that the latter overpredicts the CHF values at atmospheric pressure and for xcr>0.4 and does not provide conservative estimations for the RBMK fuel bundles.  相似文献   
6.
At present the design basis accidents for RBMK-1500 are rather thoroughly investigated. The performed analyses helped to develop and implement a number of safety modifications. Further plant safety enhancement requires developing emergency procedures that would enable beyond design basis accidents management by preventing core damage or mitigating consequences of severe accidents.  相似文献   
7.
A startup system and startup procedures are designed based on the subchannel analysis for CANDU-SCWR sliding pressure startup. Lookup tables are selected to predict the CHF and PDO heat transfer due to their wide application range. Plant parameters are analyzed in detail. The results show that the maximum cladding surface temperature can be well restricted lower than criterion (850 °C), and the proposed startup procedure is feasible for CANDU-SCWR from the point of view of thermal-hydraulics.  相似文献   
8.
Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula.The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号