排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
2.
汉语语句主题语义倾向分析方法的研究 总被引:3,自引:0,他引:3
本文介绍了如何识别汉语语句主题和主题与情感描述项之间的关系以及如何计算主题的语义倾向(极性)。我们利用领域本体来抽取语句主题以及它的属性,然后在句法分析的基础上,识别主题和情感描述项之间的关系,从而最终决定语句中每个主题的极性。实验结果显示,与手工标注的语料作为金标准进行比较,用于识别主题和主题极性的改进后的SBV极性传递算法的F度量达到了72.41%。它比原来的SBV极性传递算法和VOB极性传递算法的F度量分别提高了7.6%和2.09%。因此,所建议的改进的SBV极性传递算法是合理和有效的。 相似文献
3.
随着网络评论文本数量的快速增长,文本情感分析越来越受到研究者的广泛关注. 句子级文本情感分析就是对主观性文本进行细粒度的挖掘,有重要的研究价值. 评论句中的评价对象抽取是句子级情感分析要研究的关键问题之一. 为了提高评价对象抽取的性能,本文提出在系统模型的训练过程中引入浅层句法信息和启发式位置信息,同时在不增加领域词典的情况下, 有效提高系统的精确率.实验结果表明,将本文提出的特征引入到条件随机域模型和对比模型后,系统的各项指标均有所提高, 并且条件随机域模型的结果优于对比模型.同时,将条件随机域模型的结果与2008年国内中文评测的最大值比较,其F值超过最大值 5%. 相似文献
4.
5.
6.
意见挖掘是自然语言处理研究领域的一个新热点。词语倾向性的判定是意见挖掘的基础和重要环节。该文进行了中文词语倾向性的自动判定实验。实验中采用了《现代汉语褒贬用法词典》中的词语做为褒贬判定的核心词汇,以同义词词典扩展了褒贬义词典的词语,并使用二元语法模型来判定多倾向性词语的倾向。实验结果褒义词的F-Score为79.31%,贬义词的F-Score为78.18%。 相似文献
7.
8.
近年来,随着电子商务的快速发展,面向产品评论的意见挖掘研究受到国内外学者的广泛关注,成为学术界的研究热点之一.对产品评论进行意见挖掘,不仅能为用户购物提供决策支持,还可以帮助生产商对产品和服务进行改进,具有重要的研究意义.对面向产品评论的意见挖掘的研究现状进行归纳和总结.首先将该问题分为3个子任务:意见信息抽取、情感分析,意见归纳.然后基于国内外的研究进展对它们进行详细的介绍和分析.并讨论该领域其他一些值得关注的问题. 相似文献
9.
10.
为了从用户评论中及时、准确的获取用户群体对软件及服务的满意度,从而发现用户期望,为软件的改进提供依据,实现了一个对中文软件评论进行情感倾向性分析的系统.系统从网络上收集软件的用户评论数据,通过无监督的方法识别出评论中的用户关注点和情感倾向,将结果以可视化的方式展现给开发者.通过在真实数据上的测试,表明了该系统的有效性. 相似文献