首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   4篇
  自动化技术   6篇
  2017年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
一种直推式多标记文档分类方法   总被引:3,自引:0,他引:3  
真实世界的文档往往同时属于多个类别,因此,利用多标记学习技术进行文档分类是一个重要的研究方向,现有多标记文档分类方法需要利用大量有正确分类标记的文档才能获得好的分类性能,然而,在实际应用中往往只能得到少量的有标记文档作为分类所需的训练文档.出于利用未标记文档的想法,提出一种基于随机游走的直推式多标记文档分类方法,可以利用大量的未标记文档来辅助提高分类性能,实验结果表明,该方法的性能优于现有直推式多标记分类方法CNMF.  相似文献
2.
机器学习研究中的一个重要课题是如何有效结合已标识数据和未标识数据去推断未标识点标识.本文利用相近原则和直推方法求解这个问题.源于直观事实的相近原则是指"在输入空间中相近的对象其输出也相近".为求得满足这个原则的半指导学习问题的解,我们给出了作为一般方法的基于相近原则的半指导问题直推学习机,得到解的解析表达和迭代算法,公式形式简洁,计算实现容易.给出实例验证该方法在解决实际问题中的有效性,并用图例与支撑向量机和半指导支撑向量机的解作了对比.  相似文献
3.
刁树民  王永利 《计算机应用》2009,29(6):1578-1581
在进行组合决策时,已有的组合分类方法需要对多个组合分类器均有效的公共已知标签训练样本。为了解决在没有已知标签样本的情况下数据流组合分类决策问题,提出一种基于约束学习的数据流组合分类器的融合策略。在判定测试样本上的决策时,根据直推学习理论设计满足每一个局部分类器约束度量的方法,保证了约束的可行性,解决了分布式分类聚集时最大熵的直推扩展问题。测试数据集上的实验证明,与已有的直推学习方法相比,此方法可以获得更好的决策精度,可以应用于数据流组合分类的融合。  相似文献
4.
在目标跟踪中, 大部分算法都是假设目标亮度不变或者目标子空间不变, 然而, 这些假设在实际场景中并不一定满足, 特别是当目标和背景都发生较大变化时, 目标容易丢失. 针对这种情况, 本文从直推学习的角度重新描述跟踪问题, 并提出一种鲁棒的目标跟踪方法.为获得更好的跟踪效果, 目标当前状态估计不仅要逼近目标模型, 而且要与以前的结果具有相同的聚类. 本方法利用目标模型对跟踪问题进行全局约束, 利用以前的结果约束状态局部分布, 构造代价函数. 将以前的状态估计作为正样本, 当前的候选状态作为未标记样本, 以所有样本为顶点建立图, 同时学习目标的全局外观模型和所有状态的局部聚类结构. 最后利用图拉普拉斯, 通过简单的线性代数运算, 获得代价函数的最优解. 在实验中, 选取包含各种情形的视频, 如目标的姿势改变、表情变化、部分遮挡以及周围光照的变化等, 利用本文提出的方法测试, 并和其他算法比较. 实验结果表明, 本文方法能够很好处理这些情形, 实现对目标的鲁棒跟踪.  相似文献
5.
冀中  孙涛  于云龙 《软件学报》2017,28(11):2961-2970
零样本分类的目标是对训练阶段未出现过的类别的样本进行识别和分类,其主要思路是,借助类别语义信息,将可见类别的知识转移到未见类别中.提出了一种直推式的字典学习方法,包含以下两个步骤:首先,提出一个判别字典学习模型,对带标签的可见类别样本的视觉特征和类别语义特征建立映射关系模型;然后,针对可见类别和未见类别不同引起的域偏移问题,提出了一个基于直推学习的修正模型.通过在3个基准数据集(AwA,CUB和SUN)上的实验结果,证明了该方法的有效性和先进性.  相似文献
6.
张新  何苯  罗铁坚  李东星 《软件学报》2014,25(12):2865-2876
近年来,Twitter 搜索在社交网络领域引起越来越多学者的关注。尽管排序学习可以融合 Twitter 中丰富的特征,但是训练数据的匮乏,会降低排序学习的性能。直推式学习作为一种常用的半监督学习方法,在解决训练数据的稀少性中发挥着重要的作用。由于在直推式学习的迭代过程中会生成噪音,基于聚类的直推式学习方法被提出。在基于聚类的直推式学习方法中有两个重要的参数,分别为聚类的阈值以及聚类文档的数量。在原有工作的基础上,提出使用另外一种不同的聚类算法。大量在标准TREC数据集Tweets11上的实验表明,聚类的阈值以及聚类过程中文档数量的选择都会对模型的检索性能产生影响。另外,也分析了基于聚类的直推式学习模型的鲁棒性在不同查询集上的表现。最后,引入名为簇凝聚度的质量控制因子,提出了一种基于聚类的自适应的直推式方法来实现 Twitter 检索。实验结果表明,基于聚类的自适应学习算法具有更好的鲁棒性。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号