首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
无线电   10篇
自动化技术   5篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 312 毫秒
1.
In this paper, we study the dynamic survivable routing problem, both in optical networks without wavelength conversion and in optical networks with sparse wavelength conversion, and propose a novel hybrid algorithm for it based on the combination of mobile agents technique and genetic algorithms (GA). By keeping a suitable number of mobile agents in the network to cooperatively explore the network states and continuously report cycles (that are formed by two disjoint-link routes) into the routing tables, our new hybrid algorithm can promptly determine the first population of cycles for a new request based on the routing table of its source node, without the time consuming process associated with current GA-based lightpath protection schemes. We further improve the performance of our algorithm by introducing a more advanced fitness function that is suitable for both the above networks. Extensive simulation studies on the ns-2 network simulator show that our hybrid algorithm achieves a significantly lower blocking probability than the conventional survivable routing algorithms for all the cases we studied.  相似文献   
2.
Recently, progress has been made in the Generalized Multi-Protocol Label Switching (GMPLS) and Automatic Switched Optical Networks (ASON) standardizations. These technologies realize construction of large-scaled optical networks, interconnections among single-domain Wavelength Division Multiplexing (WDM) networks, and direct communication over multi-domain WDM networks. Meanwhile, it is known that the topology of the Internet exhibits the power-law attribute. Since the topology of the Internet, which is constructed by interconnecting ASs, exhibits the power-law, there is a possibility that large-scale WDM networks, which are constructed by interconnecting WDM networks, will also exhibit the power-law attribute. One of the structural properties of a topology that adheres to the power-law is that most nodes have just a few links, although some have a tremendous number of them. Another property is that the average distance between nodes is smaller than in a mesh-like network. A natural question is how such a structural property performs in WDM networks. In this paper, we first investigate the property of the power-law attribute of physical topologies for WDM networks. We compare the performance of WDM networks with mesh-like and power-law topologies, and show that links connected to high-degree nodes are bottlenecks in power-law topologies. To relax this, we introduce a concept of virtual fiber, which consists of two or more fibers, and propose its configuration method to utilize wavelength resources more effectively. We compare performances of power-law networks with and without our method by computer simulations. The results show that our method reduces the blocking probabilities by more than one order of magnitude.  相似文献   
3.
This paper investigates the problem of dynamic survivable lightpath provisioning against single-node/link failures in optical mesh networks employing wavelength-division multiplexing (WDM).We unify various forms of segment protection into generalized segment protection (GSP). In GSP, the working path of a lightpath is divided into multiple overlapping working segments, each of which is protected by a node-/link-disjoint backup segment. We design an efficient heuristic which, upon the arrival of a lightpath request, dynamically divides a judiciously selected working path into multiple overlapping working segments and computes a backup segment for each working segment while accommodating backup sharing. Compared to the widely considered shared-path protection scheme, GSP achieves much lower blocking probability and shorter protection-switching time for a small sacrifice in control and management overhead.On the basis of generalized segment protection, we present a new approach to provisioning lightpath requests according to their differentiated quality-of-protection (QoP) requirements. We focus on one of the most important QoP parameters—namely, protection-switching time—since lightpath requests may have differentiated protection-switching-time requirements. For example, lightpaths carrying voice traffic may require 50 ms protection-switching time while lightpaths carrying data traffic may have a wide range of protection-switching-time requirements. Numerical results show that our approach achieves significant performance gain which leads to a remarkable reduction in blocking probability.While our focus is on the optical WDM network, the basic ideas of our approaches can be applied to multi-protocol label switching (MPLS) networks with appropriate adjustments, e.g., differentiated bandwidth granularities.  相似文献   
4.
The problem of lightpath topology design (LTD) and traffic routing over the lightpaths for wavelength-routed optical backbone networks has been investigated extensively in the past using heuristic as well as linear-programming based approaches. Sensitivity of such long-haul backbones to physical-layer impairments is required to be adequately addressed during LTD phase to improve overall performance. For optical communication using wavelength-division multiplexing (WDM) over a long-haul fiber backbone, four-wave mixing (FWM) may become one of the significant transmission impairments. Intrinsically, for a WDM-based wavelength-routed network with wavelengths assigned using equally-spaced channels, the generated FWM components are found to remain more crowded at the center of the fiber transmission window. Using this observation, we propose an LTD scheme employing a unique wavelength assignment (WA) technique, wherein long lightpaths (traversing through a larger number of fiber links) are allocated wavelengths at the either edges of the fiber transmission window whereas short lightpaths (consisting of fewer fiber links) are placed in the middle of the transmission window, thereby reducing the FWM crosstalk for long lightpaths. Since long lightpaths comprise of large numbers of fiber links and intermediate nodes, they experience large amplified spontaneous emission (ASE) noise and switch crosstalk. Therefore, by using the proposed WA technique, long lightpaths while suffering from more ASE noise and switch crosstalk get subjected to lesser FWM crosstalk leading to a more uniform distribution of overall optical signal-to-noise ratio for all the lightpaths across the network. Analysis of our results indicates that the proposed FWM-aware LTD scheme with the novel WA technique can achieve similar congestion levels (of lightpaths) and bandwidth utilization efficiency without any need of additional network resources as compared with the existing FWM-unaware LTD schemes.  相似文献   
5.
In this paper we investigate the problem of provisioning holding-time-aware (HTA) dynamic circuits in all-optical wavelength division multiplexed (WDM) networks. We employ a technique called lightpath switching (LPS) wherein the data transmission may begin on one lightpath and switch to a different lightpath at a later time. Lightpath switches are transparent to the user and are managed by the network. Allowing LPS creates a number of segments that can use independent lightpaths. We first compare the performance of traditional routing and wavelength (RWA) assignment to routing and wavelength assignment with LPS. We show that LPS can significantly reduce blocking compared to traditional RWA. We then address the problem of routing dynamic anycast HTA dynamic circuits. We propose two heuristics to solve the anycast RWA problem: anycast with continuous segment (ACS) and anycast with lightpath switching (ALPS). In ALPS we exercise LPS, and provision a connection request by searching for the best candidate destination node is such a way that the network resources are utilized efficiently. In ACS we do not allow a connection request to switch lightpaths. The lightpaths to each candidate destination node of a request are computed using traditional RWA algorithms. We first compare the performance of ACS to ALPS and observe that ALPS achieves better blocking than ACS. Furthermore, we also compare the performance of these two anycast RWA algorithms to the traditional unicast RWA algorithm. We show that the anycast RWA algorithms presented here significantly outperform the traditional unicast RWA algorithms.  相似文献   
6.
在WDM网络中有两种全光多播方式,一种是OCS(光电路交换)网络中基于光树的多播,另一种就是在OBS(光突发分组交换)网络中基于突发分组的多播。这两种方式都有各自的优缺点。在分析这两种交换技术优缺点的同时,提出了一种采用混合交换技术的新型光交换网络(c-HyLabs),并提出了在此网络上实现光多播的机制。通过OPNET的仿真表明,该混合光交换网络在相同条件下其延时及丢包率等性能均优于OBS网络多播。  相似文献   
7.
Advances in optical technologies have enabled the deployment of wavelength division-multiplexed (WDM) transmission systems capable of providing huge amounts of bandwidth across long distances. In this scenario, dynamic routing for direct provisioning of optical paths at the WDM layer becomes a challenging problem. Any distributed algorithm for routing dynamic traffic demands on optical transport infrastructures should be simple, flexible, efficient and scalable. The contribution of this paper is a novel integrated routing and grooming scheme for setting-up bandwidth guaranteed paths on hybrid wavelength and label switched networks. Our proposal exploits and refines the minimum interference routing idea according to an improved and re-optimized resource and traffic-aware approach, where critical links are detected and weighted according to a low complexity all-pairs minimum cut strategy that substantially reduce the overall number of calculations and hence the computational cost. The valuable results achieved in the comparison against other well-known reference techniques clearly demonstrate that our algorithm is very time-efficient while performing better in terms of blocking probability.
Sergio RicciardiEmail:
  相似文献   
8.
Congestion removing performance has been investigated in IP-over-CWDM networks with reconfigurable optical add/drop multiplexers (ROADMs) for the best-effort transmissions specified by the service level agreement (SLA). Mathematical models and experimental results for two approaches: automated addition of new lightpath and creation of a static bypass route in other existing lightpaths, were presented in this paper. The experimental results clarified that the congestions were removed successfully in both the approaches. Addition of new lightpath approach can provide effective adjustment of larger traffic whereas the creation of a static bypass route approach can provide fine granularity adjustment of small traffic to be switched without lightpath reconfiguration. The degraded throughput was recovered within the recovery time specified by the SLA.  相似文献   
9.
A dynamic routing and wavelength allocation technique with an interplay between physical and network layer parameters encompassing Four-wave mixing (FWM) awareness and teletraffic performance of wavelength-routed optical networks has previously been proposed for a distributed approach. In this article, we present a fast computational algorithm for our routing and wavelength assignment (RWA) encompassing FWM-induced crosstalk. The objective is to minimize the time of establishing a dynamic lightpath. For this purpose, a precomputed matrix of FWM crosstalk products is used in an adapted version of the FWM-aware dynamic RWA algorithm. The approach is validated through simulations showing improvement up to 30–50% on the provisioning time of lightpaths for different network topologies compared to an online full computational scheme.
Ken-ichi KitayamaEmail:
  相似文献   
10.
Optical networks are expected to cater for the future Internet due to the high speed and capacity that they offer. Caching in the core network has proven to reduce power usage for various video services in current optical networks. This paper investigates whether video caching will still remain power efficient in future optical networks. The study compares the power consumption of caching in a current IP over WDM core network to a future network. The study considers a number of features to exemplify future networks. Future optical networks are considered where: (1) network devices consume less power, (2) network devices have sleep-mode capabilities, (3) IP over WDM implements lightpath bypass, and (4) the demand for video content significantly increases and high definition video dominates. Results show that video caching in future optical networks saves up to 42% of power consumption even when the power consumption of transport reduces. These results suggest that video caching is expected to remain a green option in video services in the future Internet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号