首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   3篇
综合类   1篇
无线电   3篇
一般工业技术   2篇
自动化技术   55篇
  2019年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   3篇
  1994年   1篇
  1993年   2篇
  1985年   1篇
  1980年   2篇
排序方式: 共有61条查询结果,搜索用时 16 毫秒
1.
We survey the problem of deciding the stability or stabilizability of uncertain linear systems whose region of uncertainty is a polytope. This natural setting has applications in many fields of applied science, from control theory to systems engineering to biology. We focus on the algorithmic decidability of this property when one is given a particular polytope. This setting gives rise to several different algorithmic questions, depending on the nature of time (discrete/continuous), the property asked (stability/stabilizability), or the type of uncertainty (fixed/switching). Several of these questions have been answered in the literature in the last thirty years. We point out the ones that have remained open, and we answer all of them, except one which we raise as an open question. In all the cases, the results are negative in the sense that the questions are NP-hard. As a byproduct, we obtain complexity results for several other matrix problems in systems and control.  相似文献   
2.
In this study it is demonstrated that, with respect to model formulation, the number of linear and nonlinear equations involved in water distribution networks can be reduced to the number of closed simple loops. Regarding the optimization technique, a discrete state transition algorithm (STA) is introduced to solve several cases of water distribution networks. Firstly, the focus is on a parametric study of the ‘restoration probability and risk probability’ in the dynamic STA. To deal effectively with head pressure constraints, the influence is then investigated of the penalty coefficient and search enforcement on the performance of the algorithm. Based on the experience gained from training the Two-Loop network problem, a discrete STA has successfully achieved the best known solutions for the Hanoi, triple Hanoi and New York network problems.  相似文献   
3.
4.
M. Karpinski 《Algorithmica》2001,30(3):386-397
We survey recent results on the existence of polynomial time approximation schemes for some dense instances of NP-hard combinatorial optimization problems. We indicate some inherent limits for the existence of such schemes for some other dense instances of optimization problems. We also go beyond the dense optimization problems and show how other approximation problems can be solved by using dense techniques. Received October 30, 1997; revised June 25, 1999, and April 17, 2000.  相似文献   
5.
Optimization Problems Related to Zigzag Pocket Machining   总被引:2,自引:0,他引:2  
A fundamental problem of manufacturing is to produce mechanical parts from billets by clearing areas within specified boundaries from the material. Based on a graph-theoretical formulation, the algorithmic handling of one particular machining problem—``zigzag pocket machining'—is investigated. We present a linear-time algorithm that ensures that every region of the pocket is machined exactly once, while attempting to minimize the number of tool retractions required. This problem is shown to be -hard for pockets with holes. Our algorithm is provably good in the sense that the machining path generated for a pocket with h holes requires at most 5 . . . OPT + 6 . . . h retractions, where OPT is the (unknown) minimum number of retractions required by any algorithm. The algorithm has been implemented, and practical tests for pockets without holes suggest that one can expect an approximation factor of about 1.5 for practical examples, rather than the factor 5 as proved by our analysis. Received July 3, 1997; revised September 7, 1997.  相似文献   
6.
最优特征子集选择问题   总被引:73,自引:0,他引:73  
陈彬  洪家苯 《计算机学报》1997,20(2):133-138
机器学习和模式识别面临的一个重要问题,就是特征子集的选择问题,即从一个大的已生征特集合,选择一个子集合来一致地描述已知例。特别,最优特征子集选择问题,即最小的特征子集问题的 计算杂性至今学不清楚。  相似文献   
7.
Depending on whether bidirectional links or unidirectional links are used for communications, the network topology under a given range assignment is either an undirected graph referred to as the bidirectional topology, or a directed graph referred to as the unidirectional topology. The Min-Power Bidirectional (resp., Unidirectional) k-Node Connectivity problem seeks a range assignment of minimum total power subject to the constraint that the produced bidirectional (resp. unidirectional) topology is k-vertex connected. Similarly, the Min-Power Bidirectional (resp., Unidirectional) k-Edge Connectivity problem seeks a range assignment of minimum total power subject to the constraint the produced bidirectional (resp., unidirectional) topology is k-edge connected. The Min-Power Bidirectional Biconnectivity problem and the Min-Power Bidirectional Edge-Biconnectivity problem have been studied by Lloyd et al. [23]. They show that range assignment based the approximation algorithm of Khuller and Raghavachari [18], which we refer to as Algorithm KR, has an approximation ratio of at most 2(2 – 2/n)(2 + 1/n) for Min-Power Bidirectional Biconnectivity, and range assignment based on the approximation algorithm of Khuller and Vishkin [19], which we refer to as Algorithm KV, has an approximation ratio of at most 8(1 – 1/n) for Min-Power Bidirectional Edge-Biconnectivity. In this paper, we first establish the NP-hardness of Min-Power Bidirectional (Edge-) Biconnectivity. Then we show that Algorithm KR has an approximation ratio of at most 4 for both Min-Power Bidirectional Biconnectivity and Min-Power Unidirectional Biconnectivity, and Algorithm KV has an approximation ratio of at most 2k for both Min-Power Bidirectional k-Edge Connectivity and Min-Power Unidirectional k-Edge Connectivity. We also propose a new simple constant-approximation algorithm for both Min-Power Bidirectional Biconnectivity and Min-Power Unidirectional Biconnectivity. This new algorithm applies only to Euclidean instances, but is best suited for distributed implementation. A preliminary version of this work appeared in the proceedings of the 2nd International Conference on AD-HOC Network and Wireless (Adhoc-Now 2003). Research performed in part while visiting the Max-Plank-Institut fur Informatik. Gruia Calinescu is an Assistant Professor of Computer Science at the Illinois Institute of Technology since 2000. He held postdoc or visiting researcher positions at DIMACS, University of Waterloo, and Max-Plank Institut fur Informatik. Gruia has a Diploma from University of Bucharest and a Ph.D. from Georgia Insitute of Technology. His research interests are in the area of algorithms. Peng-Jun Wan has joined the Computer Science Department at Illinois Institute of Technology in 1997 and has been an Associate Professor since 2004. He received his Ph.D. in Computer Science from University of Minnesota in 1997, M.S. in Operations Research and Control Theory from Chinese Academy of Science in 1993, and B.S. in Applied Mathematics from Tsinghua University in 1990. His research interests include optical networks and wireless networks.  相似文献   
8.
The Individual Haplotyping MFR problem is a computational problem that, given a set of DNA sequence fragment data of an individual, induces the corresponding haplotypes by dropping the minimum number of fragments. Bafna, Istrail, Lancia, and Rizzi proposed an algorithm of time O(22k m 2 n+23k m 3) for the problem, where m is the number of fragments, n is the number of SNP sites, and k is the maximum number of holes in a fragment. When there are mate-pairs in the input data, the parameter k can be as large as 100, which would make the Bafna-Istrail-Lancia-Rizzi algorithm impracticable. The current paper introduces a new algorithm PM-MFR of running time , where k 1 is the maximum number of SNP sites that a fragment covers (k 1 is smaller than n), and k 2 is the maximum number of fragments that cover a SNP site (k 2 is usually about 10). Since the time complexity of the algorithm PM-MFR is not directly related to the parameter k, the algorithm solves the Individual Haplotyping MFR problem with mate-pairs more efficiently and is more practical in real biological applications. This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 60433020 and 60773111, the Program for New Century Excellent Talents in University No. NCET-05-0683, the Program for Changjiang Scholars and Innovative Research Team in University No. IRT0661, and the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 06C526.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号