首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6290篇
  免费   807篇
  国内免费   330篇
电工技术   699篇
综合类   360篇
化学工业   1052篇
金属工艺   819篇
机械仪表   443篇
建筑科学   183篇
矿业工程   81篇
能源动力   107篇
轻工业   183篇
水利工程   57篇
石油天然气   455篇
武器工业   45篇
无线电   742篇
一般工业技术   717篇
冶金工业   451篇
原子能技术   195篇
自动化技术   838篇
  2024年   8篇
  2023年   51篇
  2022年   93篇
  2021年   135篇
  2020年   149篇
  2019年   166篇
  2018年   179篇
  2017年   269篇
  2016年   277篇
  2015年   299篇
  2014年   408篇
  2013年   377篇
  2012年   485篇
  2011年   499篇
  2010年   421篇
  2009年   462篇
  2008年   406篇
  2007年   432篇
  2006年   430篇
  2005年   296篇
  2004年   227篇
  2003年   242篇
  2002年   227篇
  2001年   210篇
  2000年   143篇
  1999年   127篇
  1998年   134篇
  1997年   85篇
  1996年   47篇
  1995年   31篇
  1994年   33篇
  1993年   7篇
  1992年   21篇
  1991年   9篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有7427条查询结果,搜索用时 31 毫秒
1.
The spinal ejaculation generator (SEG) is located in the central gray (lamina X) of the rat lumbar spinal cord and plays a pivotal role in the ejaculatory reflex. We recently reported that SEG neurons express the oxytocin receptor and are activated by oxytocin projections from the paraventricular nucleus of hypothalamus (PVH). However, it is unknown whether the SEG responds to oxytocin in vivo. In this study, we analyzed the characteristics of the brain–spinal cord neural circuit that controls male sexual function using a newly developed in vivo electrophysiological technique. Optogenetic stimulation of the PVH of rats expressing channel rhodopsin under the oxytocin receptor promoter increased the spontaneous firing of most lamina X SEG neurons. This is the first demonstration of the in vivo electrical response from the deeper (lamina X) neurons in the spinal cord. Furthermore, we succeeded in the in vivo whole-cell recordings of lamina X neurons. In vivo whole-cell recordings may reveal the features of lamina X SEG neurons, including differences in neurotransmitters and response to stimulation. Taken together, these results suggest that in vivo electrophysiological stimulation can elucidate the neurophysiological response of a variety of spinal neurons during male sexual behavior.  相似文献   
2.
The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.  相似文献   
3.
Recent research on mast cell biology has turned its focus on MRGPRX2, a new member of the Mas-related G protein-coupled subfamily of receptors (Mrgprs), originally described in nociceptive neurons of the dorsal root ganglia. MRGPRX2, a member of this group, is present not only in neurons but also in mast cells (MCs), specifically, and potentially in other cells of the immune system, such as basophils and eosinophils. As emerging new functions for this receptor are studied, a variety of both natural and pharmacologic ligands are being uncovered, linked to the ability to induce receptor-mediated MC activation and degranulation. The diversity of these ligands, characterized in their human, mice, or rat homologues, seems to match that of the receptor’s interactions. Natural ligands include host defense peptides, basic molecules, and key neuropeptides such as substance P and vasointestinal peptide (known for their role in the transmission of pain and itch) as well as eosinophil granule-derived proteins. Exogenous ligands include MC secretagogues such as compound 48/80 and mastoparan, a component of bee wasp venom, and several peptidergic drugs, among which are members of the quinolone family, neuromuscular blocking agents, morphine, and vancomycin. These discoveries shed light on its capacity as a multifaceted participant in naturally occurring responses within immunity and neural stimulus perception, as in responses at the center of immune pathology. In host defense, the mice Mrgprb2 has been proven to aid mast cells in the detection of peptidic molecules from bacteria and in the release of peptides with antimicrobial activities and other immune mediators. There are several potential actions described for it in tissue homeostasis and repair. In the realm of pathologic response, there is evidence to suggest that this receptor is also involved in chronic inflammation. Furthermore, MRGPRX2 has been linked to the pathophysiology of non-IgE-mediated immediate hypersensitivity drug reactions. Different studies have shown its possible role in other allergic diseases as well, such as asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. In this review, we sought to cover its function in physiologic processes and responses, as well as in allergic and nonallergic immune disease.  相似文献   
4.
《Ceramics International》2022,48(2):2377-2384
Bi2O3, Y2O3 and MgO co-doped BaTiO3 (BT)-based X8R ceramics were synthesized successfully for the first time. The effects of the sintering temperature and Bi2O3, Y2O3 and MgO dopants on the dielectric properties were investigated systematically. Bi2O3 doping can increase the Curie temperature (Tc), but reduces the overall dielectric permittivity. On the other hand, Y2O3 doping is beneficial to the formation of core-shell microstructure and the increase of Tc, whereas MgO can prevent excessive Y2O3 from diffusing into grain core, and thereby further contributes to the generation of the core–shell microstructure. The generation of the typical core-shell microstructure was confirmed and investigated in detail by using transmission electron microscopy (TEM). It is argued that the synergistic effects of Bi2O3, Y2O3 and MgO co-doping in terms of the formation of the core-shell structure and the increase of Tc, can help improve the temperature stability of the dielectric permittivity effectively. Increasing the sintering temperature leads to an increase in the grain size, which in turn leads to an increase in the overall dielectric permittivity due to the grain size effect.  相似文献   
5.
The corrosion behavior and mechanism of iron‐oxidizing bacteria (IOB) on X65 steel in seawater are studied. This study uses the methods of weight loss, electrochemical measurements, and surface analysis. The results show that the IOB increases the corrosion damage degree of steel. Pittings are observed in the medium with IOB. The potentiodynamic polarization curves show that the anodic reaction rate is accelerated in the corrosion process of IOB. The synergies in corrosion between the metal surface, abiotic corrosion products, and bacterial cells, and the pitting corrosion mechanism of X65 steel are discussed.  相似文献   
6.
7.
采用双相区加速冷却法(加速冷却始冷温度为700 ℃)对X80管线钢进行热处理,获得了贝氏体和铁素体(B+F)双相组织。然后通过组织表征、力学性能测试以及在3.5wt%NaCl溶液中的耐蚀性进行研究。结果表明:热处理后获得的管线钢组织由板条状贝氏体、多边形铁素体及少量马氏体/奥氏体岛组成。与热处理前相比,(B+F)双相管线钢屈强比较低,为0.65,初始加工硬化指数为0.31,均匀伸长率达8.3%,塑性显著提升;双相组织中含有52.4%的铁素体,因而耐腐蚀性明显提高。通过双相区加速冷却法获得的(B+F)两相组织在塑变过程中发生协调变形,可以适应大变形的需求,同时耐蚀性优异,为大变形管线钢实际生产提供一定的借鉴。  相似文献   
8.
The P2X7 receptor is a promising target for the treatment of various diseases due to its significant role in inflammation and immune cell signaling. This work describes the design, synthesis, and in vitro evaluation of a series of novel derivatives bearing diverse scaffolds as potent P2X7 antagonists. Our approach was based on structural modifications of reported (adamantan-1-yl)methylbenzamides able to inhibit the receptor activation. The adamantane moieties and the amide bond were replaced, and the replacements were evaluated by a ligand-based pharmacophore model. The antagonistic potency of the synthesized analogues was assessed by two-electrode voltage clamp experiments, using Xenopus laevis oocytes that express the human P2X7 receptor. SAR studies suggested that the replacement of the adamantane ring by an aryl-cyclohexyl moiety afforded the most potent antagonists against the activation of the P2X7 cation channel, with analogue 2-chloro-N-[1-(3-(nitrooxymethyl)phenyl)cyclohexyl)methyl]benzamide ( 56 ) exhibiting the best potency with an IC50 value of 0.39 μM.  相似文献   
9.
近年来,我国多项煤制天然气示范工程投入运行,X80钢螺旋焊管常用于天然气长输管道建设,其与煤制天然气的相容性直接影响了长输管道的服役寿命和安全可靠性。为研究煤制天然气对国产X80钢螺旋焊管的力学性能影响,分别从埋弧螺旋焊管的母材和螺旋焊缝处取样,在总压为12 MPa,氢气分数为0,1vol%,2.2vol%,5vol%的模拟环境中分别进行慢应变速率拉伸试验和疲劳裂纹扩展速率试验。试验结果表明:含氢量5vol%以下时,煤制天然气对国产X80管线钢强度性能影响很小,但对塑性性能有一定影响,对疲劳裂纹扩展性能影响很大,煤制天然气中氢对母材的疲劳裂纹扩展性能劣化影响比螺旋焊缝严重。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号