首页 | 本学科首页 官方微博 | 高级检索

 按 中文标题 英文标题 中文关键词 英文关键词 中文摘要 英文摘要 作者中文名 作者英文名 单位中文名 单位英文名 基金中文名 基金英文名 杂志中文名 杂志英文名 栏目英文名 栏目英文名 DOI 责任编辑 分类号 杂志ISSN号 检索 检索词:

 收费全文 99篇 国内免费 2篇 完全免费 46篇
 自动化技术 147篇
 2018年 1篇 2017年 1篇 2014年 5篇 2013年 2篇 2012年 5篇 2011年 10篇 2010年 9篇 2009年 3篇 2008年 19篇 2007年 14篇 2006年 12篇 2005年 18篇 2004年 14篇 2003年 13篇 2002年 15篇 2001年 1篇 2000年 1篇 1999年 2篇 1997年 2篇

1.
Data analysis applications typically aggregate data across manydimensions looking for anomalies or unusual patterns. The SQL aggregatefunctions and the GROUP BY operator produce zero-dimensional orone-dimensional aggregates. Applications need the N-dimensionalgeneralization of these operators. This paper defines that operator, calledthe data cube or simply cube. The cube operator generalizes the histogram,cross-tabulation, roll-up,drill-down, and sub-total constructs found in most report writers.The novelty is that cubes are relations. Consequently, the cubeoperator can be imbedded in more complex non-procedural dataanalysis programs. The cube operator treats each of the Naggregation attributes as a dimension of N-space. The aggregate ofa particular set of attribute values is a point in this space. Theset of points forms an N-dimensional cube. Super-aggregates arecomputed by aggregating the N-cube to lower dimensional spaces.This paper (1) explains the cube and roll-up operators, (2) showshow they fit in SQL, (3) explains how users can define new aggregatefunctions for cubes, and (4) discusses efficient techniques tocompute the cube. Many of these features are being added to the SQLStandard.  相似文献
2.

3.

4.

5.

6.

7.

8.
The pre-computation of data cubes is critical to improving the response time of On-Line Analytical Processing (OLAP) systems and can be instrumental in accelerating data mining tasks in large data warehouses. In order to meet the need for improved performance created by growing data sizes, parallel solutions for generating the data cube are becoming increasingly important. This paper presents a parallel method for generating data cubes on a shared-nothing multiprocessor. Since no (expensive) shared disk is required, our method can be used on low cost Beowulf style clusters consisting of standard PCs with local disks connected via a data switch. Our approach uses a ROLAP representation of the data cube where views are stored as relational tables. This allows for tight integration with current relational database technology.We have implemented our parallel shared-nothing data cube generation method and evaluated it on a PC cluster, exploring relative speedup, local vs. global schedule trees, data skew, cardinality of dimensions, data dimensionality, and balance tradeoffs. For an input data set of 2,000,000 rows (72 Megabytes), our parallel data cube generation method achieves close to optimal speedup; generating a full data cube of 227 million rows (5.6 Gigabytes) on a 16 processors cluster in under 6 minutes. For an input data set of 10,000,000 rows (360 Megabytes), our parallel method, running on a 16 processor PC cluster, created a data cube consisting of 846 million rows (21.7 Gigabytes) in under 47 minutes.  相似文献
9.