首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   1篇
  自动化技术   2篇
  2016年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
构造性覆盖算法(constructive covering algorithm,CCA)三支决策模型在学习过程中根据样本分布特征,自动产生正域、负域和边界域。该模型为边界域样本处理问题提供了新的思路。重点讨论了基于CCA的三支决策的边界域样本处理问题。对边界域样本处理提出了两种决策方案:一种为处理全部的边界域样本,给出了距中心最近原则、距边界最近原则、万有引力原则3种方法;另一种为处理部分的边界域样本,即只对满足一定条件的边界域样本作进一步的划分,这样使不满足条件的边界域样本仍保留在边界域,提高了边界域样本处理的正确率。用十字交叉法在5组数据集上对这两种决策方案进行了对比,实验结果表明,处理部分边界域样本时正确率更高,效果更好。  相似文献
2.
Paw lak粗糙集模型没有对正域、边界域和负域赋予语义,不能进行再决策,而三支决策对边界域赋予了新的语义,可以对边界域做出进一步刻画,对于边界域的进一步划分,依据属性的重要性,使满足条件的样本划入再决策域,不满足条件的样本继续保留在边界域中,降低了边界域样本处理的失误率.本文在对概率粗糙集模型、三支决策粗糙集的理论、贝叶斯理论的决策过程和决策粗糙集模型进行研究的基础上,提出了一种三支决策与决策粗糙集融合模型,与Paw lak-三支决策模型相比,其划分损失更小,处理结果更优.该模型运用三支决策理论对决策粗糙集的边界域赋予延迟决策的语义,对于延迟决策再运用三支决策理论进行迭代操作,对边界域样本进一步处理.在迭代的过程中,依据属性的重要程度将属性排序,从而客观的得到迭代过程中每次优先依据哪个属性进行划分.实验结果表明,该模型比单一运用决策粗糙集模型进行决策代价小,三支决策通过迭代对边界域处理的正确率有所提高,这为准确决策提供了一种新的方法.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号