首页 | 本学科首页   官方微博 | 高级检索  
     


Relationship Between Methanol Permeability and Structure of Different Radiation‐Grafted Membranes
Authors:T. Kallio  K. Kisko  K. Kontturi  R. Serimaa  F. Sundholm  G. Sundholm
Abstract:Styrene grafted and sulfonated poly(vinylidene fluoride) and poly(vinylidene fluoride‐co‐hexafluoropropylene) films are candidates as electrolytes in direct methanol fuel cells. Their behaviour in water, 1 and 3 mol dm–3 aqueous methanol, and pure methanol were studied. According to SAXS results, water and methanol‐water solutions have similar effects on the membranes, i.e., the lamellar period increases and the ionic domains enlarge. Furthermore, differences in the ionic domain structures in pure methanol and water were observed. These structural changes together with dissimilar liquid uptakes in water and in methanol are reflected as changes in the conductivities. An increase in the SAXS intensity and changes in the Bragg distance of the ionic peak were observed in methanol compared to aqueous solutions. This may be related to the hydrophobicity of the CH3 group on methanol. Dissimilarities in methanol permeability through the radiation‐grafted membrane can be related to structural differences in membranes observed with SAXS. Permeabilities were observed to be lower for the radiation‐grafted membranes compared to Nafion® 115, which compensates for the higher area resistance of the experimental membranes and thus improves their performance in a fuel cell.
Keywords:Direct Methanol Fuel Cell  Irradiation Grafting  Membrane Structure  Methanol Permeability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号