首页 | 本学科首页   官方微博 | 高级检索  
     


Parallel Approximation Algorithms by Positive Linear Programming
Authors:L. Trevisan
Affiliation:(1) Centre Universitaire d'Informatique, 24 Rue Général-Dufour, CH-1211 Genève 4, Switzerland. trevisan@cui.unige.ch., CH
Abstract:Several sequential approximation algorithms for combinatorial optimization problems are based on the following paradigm: solve a linear or semidefinite programming relaxation, then use randomized rounding to convert fractional solutions of the relaxation into integer solutions for the original combinatorial problem. We demonstrate that such a paradigm can also yield parallel approximation algorithms by showing how to convert certain linear programming relaxations into essentially equivalent positive linear programming [LN] relaxations that can be near-optimally solved in NC. Building on this technique, and finding some new linear programming relaxations, we develop improved parallel approximation algorithms for Max Sat, Max Directed Cut, and Max k CSP. The Max Sat algorithm essentially matches the best approximation obtainable with sequential algorithms and has a fast sequential version. The Max k CSP algorithm improves even over previous sequential algorithms. We also show a connection between probabilistic proof checking and a restricted version of Max k CSP. This implies that our approximation algorithm for Max k CSP can be used to prove inclusion in P for certain PCP classes. Received November 1996; revised March 1997.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号